TUTORAL PARA PASAR PUNTOS DE AUTOCAD A GOOGLE EARTH Y VICEVERSA

Por Hernán Javier Gómez-Zambrano I.C., M.Sc., Ph.D.

 Se elige una coordenada de referencia (marca de posición) en el Google Earth, que sea identificable o la misma en el Autocad, se le extraen las coordenadas y la zona. En este caso es Zona 18N, coordenadas 254435.26E y 147401.31N, según siguiente figura, debe estar en coordenadas UTM (Universal Transversal de Mercator), se cambian activando en Herramientas/Opciones/Vista3D/Universal Transversal de Mercator

- 2. Se abre el dibujo de autocad y se dezplaza la coordenada de referencia a las coordenas del Google Earth.
- 3. Se graba el archivo de autocad como *.dxf, solo con la información que se quiere exportar.
- 4. Se abre el Global Mapper y se configura la proyección, UTM, Zone 18, WGS84, METERS, y se da Aceptar, parece el esquema en la ventana, verificar que las coordenadas del punto de referencia sean las mismas del autocad. La insatalación del Global Mapper se explica en (https://www.youtube.com/watch?v=WuSNk0fVXzU --> Video https://www.mediafire.com/file/dv96f2nioml84il/Global_Mapper_v20x64.rar/fi le --> pagina de descarga)

Open Data Files

Select Pr	ojection for FINCA	MENEC	ES modificado	li ×	
Projection					
Projection:					
UTM				~	
	Load From File	Save	To File		
	Search by I	EPSG Co	de		
Zone:					
18 (78°W - 72°W - Northern Hemisphere)				~	
Datum:					
WGS84			✓ Add Datu	um	
Planar Units: Elevation Units:					
METERS ~ METERS			RS	~	
Parameters:					
Attribute			Value	^	
CENTRAL MERIDIAN SCALE FACT 0.999600000					
ORIGINU			-/5.0000000		
FALSE EA	STING (m)		500000	~	
Use Sele	cted Projection for A	I Selecte	d Files		
	Aceptar	Car	ncelar Ay	uda	

5. Exportar el archivo con extensión (*Export/Export Vector/Lidar Format*...), con extensión KML/KMZ, Se da aceptar y se graba en una carpeta.

(Unload All	Ctrl+U	Export Raster/Image Format
6	Download Online Imagery/Topo/Terrain Maps		Export Vector/Lidar Format
	Create New Map Catalog Rectify (Georeference) Imagery		Export Elevation Spatial Database
	Load Workspace Ctrl+W		Export Vector Spatial Database
	Save Workspace As Ctrl+Mayus	culas+S	Export 3D Format To Cloud Export Elevation To Cloud
	Run Script		Export Raster/Image To Cloud
	Capture Screen Contents to Image Mayuse	culas+C	Export Vector/Lidar To Cloud
	Export		Export Global Mapper Package To Cloud

- 6. Se abre el Google Earth, y en Archivo/Abrir, se carga el archivo KMZ, y debe aparecer sobre el área deseada.
- 7. Si el esquema importado está girado, se debe ir nuevamente al Autocad, se gira para que coincida con la imagen del Google Earth, y se repite el procedimiento de los pasos 2 al 6.

PASAR DE GOOGLE Earth a Autocad

El procedimiento es similar, pero en viceversa.

- 1. Se realiza un contorno en Google Earth
- Se elige una coordenada de referencia (marca de posición) en el Google Earth, que sea identificable o la misma en el Autocad, se le extraen las coordenadas y la zona. En este caso es Zona 18N, coordenadas 254435.26E y 147401.31N, según siguiente figura, debe estar en coordenadas UTM (Universal Transversal de Mercator), se cambian activando en Herramientas/Opciones/Vista3D/Universal Transversal de Mercator.
- 3. Se abre el Global Mapper y se configura la proyección, UTM, Zone 18, WGS84, METERS, y se da Aceptar, parece el esquema en la ventana, verificar que las coordenadas del punto de referencia sean las mismas del autocad.

- 4. Se crean las curvas de nivel. (ver Toturial <u>https://www.youtube.com/watch?v=cvDB9e3RxOA</u>)
- 5. Se exporta el archivo en formato de autocad, DWG o
- 6. Se abre desde autocad el archivo, el cual queda en la misma escala.