Mixing angles from five texture zeros of the quark mass matrices

Y. Giraldo[†] and E. Rojas[‡]

[†]yithsbey@gmail.com , [‡]eduro4000@gmail.com

Universidad de Nariño

Noviembre 8 de 2019

Abstract

In the Standard Model, we will deduce a configuration with five texture zeros for the quark mass matrices that it is not of the Fritzsch type. It is valid and generates all the physical quantities of interest: that includes the quark masses, the inner angles of the Cabibbo-Kobayashi-Maskawa unitary triangle, and the phase responsible for the violation of the charge-parity symmetry. To achieve this, we must include non physical phases in the unitary matrices that diagonalize the quark mass matrices to bring the Cabibbo-Kobayashi-Maskawa mixing matrix to its standard form.

Introduction

 Models like the Standard Model (SM) or its extensions, where the right fields are SU(2) singlets, it is always possible to choose a suitable basis for the right quarks using the unitary matrix coming

Five numerical texture zeros

2. Pattern with one and two diagonal zeros

Five analytical texture zeros and the **CKM** mixing matrix

The texture matrix of five zeros previously obtained has the following standard structure:

from the *polar decomposition theorem* of linear algebra, in such a way that the up and down quark mass matrices become hermitian matrices, i. e.,

 $M_u^{\dagger} = M_u, \quad \text{y} \quad M_d^{\dagger} = M_d.$

• In the SM, left and right quarks can be transformed unitarily, so that the gauge currents remain invariant, and as a result, the quark mass matrices are transformed into new equivalent matrices. This process basically consists of a common unitary transformation applied over M_u and M_d which is known as a "Weak Basis" (WB) Transformation [1], as follows:

 $M_u \to M'_u = U^{\dagger} M_u U, \quad M_d \to M'_d = U^{\dagger} M_d U,$

where U is an arbitrary unitary matrix that preserves the hermiticity of quark mass matrices.

 Any physically viable quark mass matrix can be derived from specific quark mass matrices by making a WB transformation.

$$\begin{split} U_u^{\dagger} M_u U_u &= D_u = \begin{pmatrix} \lambda_{1u} & 0 & 0 \\ 0 & \lambda_{2u} & 0 \\ 0 & 0 & \lambda_{3u} \end{pmatrix}, \\ U_d^{\dagger} M_d U_d &= D_d = \begin{pmatrix} \lambda_{1d} & 0 & 0 \\ 0 & \lambda_{2d} & 0 \\ 0 & 0 & \lambda_{3d} \end{pmatrix}, \\ \text{CKM mixing matrix} &= V = U_u^{\dagger} U_d, \\ \text{where} \\ & |\lambda_{1u}| = m_u, |\lambda_{2u}| = m_c, |\lambda_{3u}| = m_t, \\ & |\lambda_{1d}| = m_d, |\lambda_{2d}| = m_s, |\lambda_{3d}| = m_b. \\ \text{and} \\ & \lambda_{1q} < 0 \oplus \lambda_{2q} < 0 \oplus \lambda_{3q} < 0. \\ \text{for } q = u, d. \end{split}$$

Permutation	Two diagonal	One diagonal
matrices	zero patterns	zero patterns
	$(p_i M_q p_i^I)$	$(p_i M_q p_i^I)$
$p_1 = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & \xi_q & 0 \\ \xi_q & 0 & \beta_q \\ 0 & \beta_q & \alpha_q \end{pmatrix} $	$ \begin{pmatrix} 0 & \xi_q & 0 \\ \xi_q & \gamma_q & 0 \\ 0 & 0 & \alpha_q \end{pmatrix} $
$p_2 = \begin{pmatrix} 1 & & \\ & 1 \\ & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & \xi_q \\ 0 & \alpha_q & \beta_q \\ \xi_q & \beta_q & 0 \end{pmatrix} $	$ \begin{pmatrix} 0 & 0 & \xi_q \\ 0 & \alpha_q & 0 \\ \xi_q & 0 & \gamma_q \end{pmatrix} $
$p_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$ \begin{pmatrix} \alpha_q & \beta_q & 0 \\ \beta_q & 0 & \xi_q \\ 0 & \xi_q & 0 \end{pmatrix} $	$ \begin{pmatrix} \alpha_q & 0 & 0 \\ 0 & \gamma_q & \xi_q \\ 0 & \xi_q & 0 \end{pmatrix} $
$p_4 = \begin{pmatrix} 1 \\ 1 \\ & 1 \end{pmatrix}$	$ \begin{pmatrix} 0 & \xi_q & \beta_q \\ \xi_q & 0 & 0 \\ \beta_q & 0 & \alpha_q \end{pmatrix} $	$ \begin{pmatrix} \gamma_q & \xi_q & 0 \\ \xi_q & 0 & 0 \\ 0 & 0 & \alpha_q \end{pmatrix} $
$p_5 = \begin{pmatrix} & 1 \\ 1 & \\ & 1 \end{pmatrix}$	$ \begin{pmatrix} \alpha_q & 0 & \beta_q \\ 0 & 0 & \xi_q \\ \beta_q & \xi_q & 0 \end{pmatrix} $	$ \begin{pmatrix} \alpha_q & 0 & 0 \\ 0 & 0 & \xi_q \\ 0 & \xi_q & \gamma_q \end{pmatrix} $
$p_6 = \begin{pmatrix} 1 \\ & 1 \\ 1 \end{pmatrix}$	$ \begin{vmatrix} 0 & \beta_q & \xi_q \\ \beta_q & \alpha_q & 0 \\ \xi_q & 0 & 0 \end{vmatrix} $	$ \begin{vmatrix} \gamma_q & 0 & \xi_q \\ 0 & \alpha_q & 0 \\ \xi_q & 0 & 0 \end{vmatrix} $

$$M_{u} = P^{\dagger} \begin{pmatrix} 0 & 0 & |\xi_{u}| \\ 0 & \alpha_{u} & |\beta_{u}| \\ |\xi_{u}| & |\beta_{u}| & \gamma_{u} \end{pmatrix} P, \quad M_{d} = \begin{pmatrix} 0 & |\xi_{d}| & 0 \\ |\xi_{d}| & 0 & |\beta_{d}| \\ 0 & |\beta_{d}| & \alpha_{d} \end{pmatrix},$$

where $P = \text{diag}(e^{-i\phi_{\xi_u}}, e^{-i\phi_{\beta_u}}, 1)$ (with $\phi_{\beta_u} \equiv \arg(\beta_u)$) and $\phi_{\xi_u} \equiv \arg(\xi_u)$). We have nine free parameters to reproduce ten physical magnitudes: six (6) quark masses, three (3) mixing angles and one (1) CP violation phase in the CKM matrix, which implies physical relations between the quark masses and mixings.

4. The mixings

Quark masses and CKM mixing matrix

The mass of quarks and the observed parameters of the CKM matrix $|V_{ij}|$ are given in the SM scheme at a renormalization scale of $\mu = m_Z$ [2]: $m_u = 1.38^{+0.42}_{-0.41}, \ m_c = 638^{+43}_{-84}, \ m_t = 172100 \pm 1200,$ $m_d = 2.82 \pm 0.48$, $m_s = 57^{+18}_{-12}$, $m_b = 2860^{+160}_{-60}$.

 $(0.97427 \pm 0.00014 \ 0.22536 \pm 0.00061 \ 0.00355 \pm 0.00015)$ $|V| = |0.22522 \pm 0.00061 \ 0.97343 \pm 0.00015$ 0.0414 ± 0.0012 $0.00886^{+0.00033}_{-0.00032}$ $0.0405^{+0.0011}_{-0.0012}$ 0.99914 ± 0.00005

1. The basic quark mass matrices

3. Numerical quark mass matrices (in MeV units)

-79.32 + 154.72i0 5539.2 $M'_u =$ 28125.9 + 6112.8i $-79.323 - 154.72i \ 28125.9 - 6112.8i$ 167126.0

13.891097 421.41405 $M'_d = 1$ 13.891097 421.41405 2797.9042

where it is considered $\alpha_u \ll m_t$. Let's consider $\alpha_u \gtrsim 1$ m_c to adjust the experimental data, which gives $(\phi_{\beta_u} -$ $\phi_{\xi_u} \sim -\pi/2$, which is an important contribution term for the CP violation.

Conclusions

The main conclusions of this work are:

- We found only two different numerical texture patterns of five zeros.
- We have nine free parameters to reproduce ten physical magnitudes: six (6) quark masses, three (3) mixing angles and one (1) CP-violation phase of the CKM matrix, which implies physical relations between the quark masses

and mixings.

The Gatto-Sartori-Tonin (GST) relationship is maintained, and an important contribution of the CP violation is still shown in the context of the model.

References

[1] G.C. Branco, D. Emmanuel-Costa, R. Gonzalez Felipe, Phys.Lett.B477, 2000 [hep-ph/9911418].

[2] K. Nakamura et al. (Particle Data Group), JP G 37, 075021 (2010) and 2011 partial update for the 2012 edition (URL: http://pdg.lbl.gov).

[3] Yithsbey Giraldo, Phys.Rev.D86,093021(2012).

[4] Yithsbey Giraldo, Phys.Rev.D91,038302(2015).