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In this work, we propose new five texture zeros for the mass matrices in the lepton sector in order
to predict neutrino masses. In our approach, we extend beyond the Standard Model by assuming
Dirac masses for the neutrinos, a feature which allows us to make a theoretical prediction for the
lightest neutrino mass in the normal ordering. The textures that were analyzed have enough free
parameters to adjust the VPMNS mixing matrix including the CP-violating phase, the neutrino mass
squared differences δm2

21, δm
2
31, and the three charged lepton masses. In order to obtain reliable

results, we used two different procedures that are based on the weak basis transformation, a well
known technique to analyze textures and their implications for flavor physics. The first method was
based on a least-squares analysis to theoretically fit the lepton masses and the mixing parameters to
their corresponding experimental values; for this case, the best fit obtained for the lightest neutrino
mass was (3.9±0.6

0.8) × 10−3 eV. The second approach was algebraic, resulting in a lightest neutrino
mass consistent with the experimental values and the restrictions arising from the five texture zeros
of the mass matrices, and the lightest neutrino mass obtained was (3.5 ± 0.9) × 10−3 eV.

PACS numbers: 14.60.Pq, 14.60.St, 14.60.Lm.

I. INTRODUCTION

The Standard Model (SM) of the strong and electroweak interactions [1] based on the local gauge group SU(3)c ⊗
SU(2)L ⊗U(1)Y , with the unbroken SU(3)c sector being confined and the electroweak sector SU(2)L ⊗U(1)Y being
spontaneously broken by one scalar complex Higgs doublet down to U(1)em, has been very successful in explaining
several experimental issues. Some of the unanswered questions of the model are the explanation of the total number of
particle families present in nature, the hierarchy of the charged fermion mass spectrum, the quark and lepton mixing
angles, and the origin of CP violation. Other mayor issues are the existence of dark energy and dark matter and the
small magnitudes of the neutrino masses and their oscillations.

The extension of the SM with three right handed neutrinos (SMRHN) provides several useful features: a) it allows
the introduction of nine additional complex Dirac mass terms in the neutral lepton sector [2]; b) it permits the
implementation of the seesaw mechanism [3–9], and c) it is conducive for performing an analysis with Hermitian
mass matrices in the lepton sector of the model (see appendix A). Although the first two features have been widely
explored in the literature, the last one has rarely been considered. One of the purpose of this study is to analyze the
mathematical and numerical consequences of the third feature mentioned above.

Texture zeros in the mass matrices of quarks and leptons have been an outstanding working hypothesis that provide
the relationships between the mixing angles and the mass values in each sector. For the analysis of the idea dates back
to the pionering work of H. Fritszch [10–12], passing through the seminal work of Ramond, Robert and Ross [13, 14]
with a complete and exhaustive analysis of the five texture zeros case, including the CP violation phenomena, reported
in Ref. [15].

For the analysis of neutrinos, the situation is more complex because three different scenarios must be considered:
left handed Majorana neutrinos, type I seesaw, and pure Dirac neutrinos. In the case where the SM neutrinos are
massless, the simplest way to provide them with masses is to introduce a scalar SU(2)L triplet that develops vacuum
expectation value (VEV), implying the existence of three Majorana left-handed fields and a Majoron which could be
difficult to see. An exhaustive five texture zero analysis related with this 3× 3 left-handed neutrino mass matrix has
been presented in Ref. [16], supplemented by a more recent work in Ref. [17].
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When the SM is extended by including three right-handed neutrinos, the model can be used to explain neutrino
masses via the type I seesaw mechanism. Then, the effective mass matrix of the light Majorana neutrinos is given
by M ∼ MDM

−1
R MT

D where MD and MR are 3 × 3 mass matrices for the Dirac and Right-Handed (RH) Majorana
neutrinos, respectively. For this case, the texture analysis becomes more complicated, even though this texture can
be simply imposed on the 3 × 3 light neutrino mass matrix directly. However, in the context of the type I seesaw
mechanism, since the light mass matrix is a product of the Dirac mass matrix and the RH neutrino mass matrix, it
is natural to consider texture zeros in both matrices, the Dirac and the RH neutrino mass matrices. The analysis
for this case has been presented in full detail in Ref. [18]. The case of pure Dirac neutrino masses is the one we will
address in this study, based on a previous study that has already been reported in Ref. [17] and in which, Hermitian
mass matrices were also considered.

The texture of the Dirac neutrinos mass matrix has been the subject of several recent studies [17, 19–30]; this,
in part, has been motivated by the non-observation of the neutrinoless double beta decay [31]. As it is well known,
existing experiments have not been able to determine if neutrinos are Majorana or Dirac particles; however, most
works on these topics assume that neutrinos are Majorana, whereas the case for Dirac neutrino masses has not been
studied in detail. In this study we assume that neutrinos are Dirac particles [2, 32, 33], which allows us to use the weak
basis transformation, the polar decomposition theorem, and the more recent experimental data to make predictions
based on a given texture for the lepton mass matrices. It is interesting to determine the consequences of a given
texture on the prediction of the neutrino masses; indeed, for Majorana masses, there are several works predicting a
mass of a few milli-electron volts for the lightest neutrino mass [34–37]; as we will see, this value of mass has the same
order of magnitude as the results presented in this work.

There are theoretical motivations to assume Dirac masses for the neutrinos. Dirac neutrino masses are also useful to
generate baryon asymmetry via leptogenesis [38], alternative approaches to the seesaw mechanism [39], and radiative
neutrino masses [40–51], in addition to other phenomenological motivations [52, 53]. In models derived from string
theory, the Majorana masses are suppressed by selection rules related to the underlying symmetries [54, 55]. In these
models, Majorana masses can also be generated by active neutrinos via gravitational effects; however, these masses
are very small, when compared with the small scales in neutrino physics [56, 57]. The Dirac neutrino electromagnetic
properties can be tested easily due to the magnetic dipole moment that is different from zero at the quantum level [58].
The same is not true for Majorana neutrinos, for which their electromagnetic properties are not easily because they
are their own antiparticles. In this way, theoretical models with Dirac neutrinos are a motivation to refine the
electromagnetic constraints on the neutrino properties.

In the SMRHN and forbidding the bare Majorana masses of the right-handed neutral states (obtained just by
assuming lepton number conservation), the lepton mass terms after the spontaneous breaking of the local symmetry
are given by

−LD = ν̄LMnνR + ¯̀
LM``R + h.c, (1)

where νL,R = (νe, νµ, ντ )TL,R and `L,R = (e, µ, τ)TL,R (the superscript T stands for transpose). Mn and M` are the
3 × 3 complex mass matrices for the neutral and charged lepton sector, respectively. In the most general case, they
contain 36 free parameters. In the context of the SMRHN, such a large number of parameters can be drastically cut
by making use of the polar theorem of matrix algebra, by which, one can always decompose a general complex matrix
as the product of a Hermitian and a unitary matrix; in this way, the unitary matrix can be absorbed in a redefinition
of the right handed lepton components, and this immediately reduces the number of free parameters from 36 to 18
(the other eighteen parameters can be hidden in the right-handed lepton components in the context of the SM and
some of its extensions, but not for the left-right symmetric extensions). Hence, as far as this model is concerned, we
may treat without loss of generality Mn and M` as two Hermitian mass matrices, with 18 real parameters in total,
out of which six are phases. Since five of those phases can be absorbed in a redefinition of the lepton fields [59, 60],
the total number of free parameters we may play with in Mn and M` are 12 real parameters and one phase; the last
parameter can be used to explain the CP violation phenomena.

As mentioned above, we extend the SM to include the right-handed neutrinos and consider them to be Dirac type
particles. Thus, the mechanism implemented in the quark sector can be transferred with few modifications directly
to the lepton sector. Then, in the context of the SMRHN, it is always possible to implement the so-called weak basis
transformation (WBT) [61–63]. A WBT is a unitary transformation acting simultaneously on the neutral and charged
lepton fermion mass matrices. That is,

Mn →MR
n = UMnU

†, M` →MR
` = UM`U

†, (2)

where U is an arbitrary unitary matrix. We say then that the two representations (Mn,M`) and (MR
n ,M

R
` ) are

equivalent in the sense that they are related to the same Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix).
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This kind of transformation plays an important role in the study of the so-called flavor problem.
In references [15, 61, 62], it was shown that for Hermitian mass matrices, it is always possible to perform a WBT

in such a way that it is always possible to arrive at with two mass matrices with three texture zeros that do not have
any physical implication. With these three non-physical texture zeros, the number of free parameters in Mn and M`

reduces from twelve to nine real parameters and one phase, just enough to fit the physical values for the six Dirac lepton
masses, the three mixing angles, and the CP violation phase. However, for the case of neutrinos, their masses are not
known, and only the square mass diferences are experimentally available, i.e., δm2

21 = m2
2−m2

1 and δm2
31 = m2

3−m2
1.

As explained in Appendix A, for general 3× 3 complex mass matrices in the lepton sector, without losing generality
and after all the theoretical considerations, we are left with 9 free parameters and 8 experimental restrictions. To
ensure an identical number of variables and constraints, it is necessary to include an additional texture-zero (totalling
to four-texture zeros) to determine all the parameters, including the lightest neutrino mass (For a review on these
topics, see [12]). Since in this case we have 8 experimental values and 8 free parameters, a solution is guaranteed. By
imposing a second texture-zero (i.e., five-texture zeros), highly-non trivial mass matrices are required since there are
more parameters than experimental restrictions. Given the small number of ansatz to fit the data, we can consider our
solutions as a very representative set of the mass matrices with five texture zeros. In the next step, a fifth texture zero
should provide us with one physical prediction, and a possible sixth texture zero will provide us with two predictions
(On counting the degrees of freedom, we find that the maximum number of such texture zeros consistent with the
absence of a zero mass eigenvalue and a nondegenerate mass spectrum in the lepton sector is just six, with three in
the neutral sector and three in the charged sector).

In the analysis that follows, we use the SM ingredients that include one single complex Higgs doublet, enlarged
with three right-handed neutrinos (one for each family) in order to provide the neutral sector with Dirac masses,
and an unknown symmetry that is able to produce five texture zeros in the lepton sector. Two cases are going to be
considered: one with three texture zeros in the neutral lepton sector and two in the charged one, and a second case with
two texture zeros in the neutral lepton sector and three in the charged one. Two different analyses are implemented,
one for each situation. The analytical and numerical results are presented, taking special care to accommodate the
latest experimental data available [64], including the CP violation phenomena.

II. FIVE TEXTURE ZEROS: FIRST CASE.

In the context of the SMRHN with lepton number conservation, in the weak basis, and after breaking the local
gauge symmetry, the Lagrangian mass term for the lepton sector is given by

−LD = ν̄′LM
′
nν
′
R + ν̄′RM

′†
n ν
′
L + ¯̀′

LM
′
``
′
R + ¯̀′

RM
′†
` `
′
L, (3)

where M ′n and M ′` are the neutrino and charged lepton mass matrices respectively (primed fields and matrices refer
to the weak basis).

Let us now assume that for a given symmetry, the Hermitian mass matrices M ′n and M ′` present the following
textures

M ′n =

cn an 0
a∗n 0 bn
0 b∗n 0

 , M ′` =

 0 a` 0
a∗` d` b`
0 b∗` c`

 . (4)

In what follows, we present an analysis of the consequences of this particular pattern with three texture zeros in the
neutral sector and two in the charged one.

The first step is to remove the phases; this can be done by the following unitary transformation:

M ′n,` = λ†n,`Mn,`λn,`, (5)

which is achieved by using the diagonal matrices λn = (1, eiαn1 , eiαn1
+iαn2 ) and λ` = (1, eiα`1 , eiα`1+iα`2 ), respectively,

and Mn,` are the matrices whose components are the absolute values of the corresponding entries in M ′n,` (i.e.,

(Mn,`)i,j = |(M ′n,`)i,j |). If we rotate these matrices by using the orthogonal transformation Rn,` (RTn,`Rn,` = 1) to

the mass eigenstate space (the physical basis), we obtain

M ′n,` = λ†n,`R
T
n,`

m1,e 0 0
0 −m2,µ 0
0 0 m3,τ

Rn,`λn,` ≡ Un,`Mdiag
n,` U

†
n,`, (6)
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where at least one negative eigenvalue is needed in order to generate a texture-zero in the diagonal [62, 65, 66].
Here m1,m2 and m3 are the masses of the electron, muon and tau neutrinos respectively, with the masses of the
charged leptons (in MeV) given by: me = 0.5109989461 ± 0.0000000031,mµ = 105.6583745 ± 0.0000024 and mτ =
1776.86± 0.12, which correspond to the electron, muon and tau masses, respectively [64]. After rotating to the mass

eigenstates, the eigenvalues can be positive, negative or zero. In these expressions, Mdiag
n and Mdiag

` are the diagonal
mass matrices for the neutrino and charged lepton sectors, respectively. In accordance with the standard notation,
we use Un ≡ (Rnλn)† and U` ≡ (R`λ`)

†, that are two unitary matrices used to rotate from the weak basis to the
physical basis. From Eqs. (3) and (4), we obtain the relation between the states in the mass basis νL,R, `L,R, and the
corresponding states in the interaction basis ν′L,R, `′L,R:

ν′L,R = UnνL,R, `′L,R = U``L,R. (7)

Replacing these expressions in the lepton sector of the weak current, we obtain

LW− = − g√
2
W− ¯̀′

Lγ
µν′L + h.c = − g√

2
W− ¯̀

Lγ
µU†`UnνL + h.c, (8)

in such a way that the PMNS matrix is given by

VPMNS = U†`Un = R` ΦRTn , (9)

where Φ = λ`λ
†
n is a diagonal phase matrix. For the neutrino mass matrix, normal ordering is assumed [67], i.e.,:

m3 > m2 > m1, where: m2
2 = m2

1 + δm2
21, and m2

3 = m2
1 + δm2

31, with δm2
21, δm

2
31 > 0 [68].

By imposing the invariance of the trace and the determinant of the mass matrices (tr[M ′n,`] = tr[Mdiag
n,` ],

tr

[(
M ′n,`

)2]
= tr

[(
Mdiag
n,`

)2]
, and Det[M ′n,`] = Det[Mdiag

n,` ]), the following relations are obtained for this partic-

ular texture:

cn = m1 −m2 +m3,

|an| =

√
(m1 −m2)(m1 +m3)(m2 −m3)

m1 −m2 +m3
,

|bn| =
√

m1m2m3

m1 −m2 +m3
,

d` = me −mµ +mτ − c`,

|b`| =

√
(c` −me)(c` +mµ)(mτ − c`)

c`
,

|a`| =
√
memµmτ

c`
.

From the previous identifications, it is possible to obtain an explicit form for the mass matrices of leptons that allows
us to obtain, through diagonalization of Mn and M`, the orthogonal matrices in Eq. (9),

Rn =


−
√

m1(m2−m1)(m1+m3)
(m1+m2)(m3−m1)(m1−m2+m3)

√
m1(m3−m2)

(m1+m2)(m3−m1)

√
m2m3(m3−m2)

(m1+m2)(m3−m1)(m1−m2+m3)√
m2(m1−m2)(m2−m3)

(m1+m2)(m2+m3)(m1−m2+m3)
−
√

m2(m1+m3)
(m1+m2)(m2+m3)

√
m1m3(m1+m3)

(m1+m2)(m2+m3)(m1−m2+m3)√
m3(m1+m3)(m3−m2)

(m3−m1)(m2+m3)(m1−m2+m3)

√
m3(m2−m1)

(m2+m3)(m3−m1)

√
m1m2(m2−m1)

(m3−m1)(m2+m3)(m1−m2+m3)

 , (10)

R` =


−
√

mµmτ (c`−me)
c`(me+mµ)(mτ−me) −

√
me(c`−me)

(me+mµ)(mτ−me)

√
me(c`+mµ)(c`−mτ )
c`(me+mµ)(me−mτ )√

memτ (c`+mµ)
c`(me+mµ)(mµ+mτ )

−
√

mµ(c`+mµ)
(me+mµ)(mµ+mτ )

√
mµ(me−c`)(c`−mτ )
c`(me+mµ)(mµ+mτ )√

memµ(c`−mτ )
c`(me−mτ )(mµ+mτ )

√
mτ (mτ−c`)

(mτ−me)(mµ+mτ )

√
mτ (c`−me)(c`+mµ)
c`(mτ−me)(mµ+mτ )

 . (11)

From Rn and R`, the PMNS mixing matrix defined in Eq (9) can be constructed. This is a matrix, which besides
the CP violating phase, is a function of a single mathematical parameter c`. In this way, the three mixing angles
in VPMNS are expressed as functions of the lepton masses, c`, and in practice, also of the phases, with two physical
predictions according to the parameter counting analysis presented in Appendix A. The entries in Rn and R` are
real values because of the normal hierarchy assumed in the neutral lepton sector and as far as c` is in the interval
me < c` < mτ . We then have the freedom to use c` and m1 as free parameters fixed by a statistical analysis.
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A. Least squares analysis

From Eq. (9), we know that VPMNS = R` ΦRTn , with Φ as the following diagonal matrix:

Φ =

1 0 0
0 eiφ1 0
0 0 eiφ2

 ,

where φ1 and φ2 are free parameters.
Then, the former analysis implies that the PMNS matrix is a function of the free parameters (m1, c`, φ1, φ2), wherein

we have chosen m1 as the lightest neutrino mass. After a numerical adjustment by means of the χ2 analysis, it is
found that for our particular choice of the five-zero texture lepton mass matrices in Eq. (4), the normal hierarchy is
favored. Neglecting correlations, the χ2 function is given by

χ2 = P 2
J +

∑
i,j=1,2,3

P 2
ij ,

where the pulls are

Pij =
Uij − Ūij
δUij

where Uij = |(VPMNS)ij | is the absolute value of the components from the product of the diagonalization matri-
ces (9). The absolute values Ūij correspond to the global averages for the components of the PMNS matrix and δUij
correspond to 1σ errors. PJ is the pull of the Jarlskog invariant, which in the standard parameterization, is given
by J̄ = c12c23c

2
13s12s23s13 sin δ = −0.0270054 and the corresponding 1σ uncertainty is δJ = 0.0106304, for normal

ordering [64]. The theoretical prediction is given by J = Im (Uµ3U
∗
τ3Uµ2U

∗
τ2), where in this expression U stands for

the PMNS mixing matrix. The upper bound m1 + m2 + m3 < 0.17 eV [64, 69–71] , is also imposed. Using the data
from [68] 1, the fit results are shown in the following tables:

m1 (eV) c` (eV) φ1 (rad) φ2 (rad) χ2
min

0.00395±0.00062
0.00078 523176. 0.0190664 1.56122 12.4204

TABLE I: Best fit free parameters and minimum χ2 function.

P11 P12 P13 P21 P22 P23 P31 P32 P33 PJ
0.428531 -0.385085 0.0430767 -0.205321 -1.2577 1.91336 0.290472 1.25036 -2.2701 0.0228083

TABLE II: Pi,j is the pull of the i, j component of the PMNS matrix and PJ is the pull of the Jarlskog invariant in the χ2

analysis. The minimum of the χ2 function is 12.4204 for ten observables and four parameters (m1, c`, φ1, φ2). The fit goodness
is χ2/d.o.f = 2.07 which is a relatively high value due to P33 and P23 pulls which have a deviation around 2σ respect to their
experimental values, despite this result it is still an acceptable fit.

In our χ2 analysis, the pseudo observables are the absolute values of the PMNS matrix components and the Jarlskog
invariant, with pulls Pi,j and PJ , respectively. We do not consider the correlations between them 2.

Even though a value for the fit goodness χ2/d.o.f ∼ 2.07 is not optimal, the result is acceptable. We can see that
the main source of discrepancy is related to the (VPMNS)23 and (VPMNS)33 components, which deviate from their
experimental values by 2σ. It must be emphasized here that a lightest neutrino mass equal to zero and the inverse
ordering of the neutrino masses are not favored by this texture (the same is true for the equivalent textures via WBT).

1 NuFIT collaboration (http://www.nu-fit.org/?q=node/211)(with SK atmospheric data).
2 The collaborations report correlation effects between observables, in our case, the components of the PMNS matrix are the result of a

global fit. However, in phenomenology, it is a common practice to use pseudo observables.
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It is possible that for another non-equivalent five-zero texture, a realization of the inverse ordering may be needed,
and this subject requires a more dedicated study.

III. FIVE TEXTURE ZEROS: SECOND CASE.

Let us now assume that in the context of the SMRHN with the neutrinos being only Dirac type particles, there is
a symmetry that produces the Hermitian mass matrices M ′n and M ′` with the following textures:

M ′n =

 0 Cn 0

C∗n En Bn
0 B∗n An

 , M ′` =

 0 C` 0

C∗` 0 B`
0 B∗` A`

 . (12)

Let us analyze the consequences of this new pattern with three texture zeros in the charged sector and two in the
neutral one. Without losing generality, it is possible to eliminate the phases of the M ′` matrix by means of a WBT,
so that the CP violation phase only appears in the neutrino mass matrix. The algebra shows that it is possible to

diagonalize the charged lepton sector M` = U`D`U
†
` (which as in the previous section we define (M`)i,j = |(M ′`)i,j |),

where D` =Diag.(me,−mµ,mτ ), in order to take full advantage of using the following unitary matrix [72]:

U` =


eiθ1

√
mµmτ (A`−me)

A`(mµ+me)(mτ−me) −eiθ2
√

memτ (mµ+Al)
A`(mµ+me)(mτ+mµ)

√
−memµ(A`−mτ )

A`(mτ−me)(mτ+mµ)

eiθ1
√

me(me−A`)
(−mµ−me)(mτ−me) eiθ2

√
mµ(A`+mµ)

(mµ+me)(mτ+mµ)

√
mτ (mτ−A`)

(mτ−me)(mτ+mµ)

−eiθ1
√

me(Al+mµ)(A`−mτ )
A`(−mµ−me)(mτ−me) −e

iθ2

√
mµ(A`−me)(mτ−A`)
A`(mµ+me)(mτ+mµ)

√
mτ (Al−me)(A`+mµ)
A`(mτ−me)(mτ+mµ)

 , (13)

where θ1 and θ2 are arbitrary phases and A` = me −mµ + mτ . Even though the phases θ1 and θ2 in the rotation
matrix of Ul are not CP phases (they can be absorbed in the fields), these phases are quite useful to match our
theoretical expression for the PMNS matrix using the standard convention [73]. To obtain the three texture zeros in
the lepton mass matrix, the following relations are also necessary:

|B`| =

√
(A` −me)(A` +mµ)(mτ −A`)

A`
and |C`| =

√
memµmτ

A`
.

For the neutrino sector, we are subject to the condition U†`Un = VPMNS, and necessarily, the diagonalizing matrix must
be given by Un = U`VPMNS, so that the relation between the mass matrix in the weak basis and the diagonal matrix
Dn in the mass space is

M ′n =

 0 Cn 0

C∗n En Bn
0 B∗n An

 = U`(VPMNS)Dn(VPMNS)†U†` ≡ UnDnU
†
n. (14)

For this second case the only free parameters are: m1 from the diagonal matrix Dn=Diag.(m1,−m2,m3), and θ1 and
θ2 from U`. This result is important since we can interpret the neutrino masses as predictions associated with the
texture of the mass matrices. From these expressions, we can obtain useful relations by identifying U` with the WBT
U in Eq. (2) [65].



7

A. Numerical results

For the second case, when solving numerically to obtain the textures for the neutrino mass matrix in the normal
hierarchy, we obtain

m1 = (0.00354± 0.00088) eV,

m2 = (0.00930± 0.00036) eV,

m3 = (0.05040± 0.00030) eV.

(15)

In our numerical analysis the main source of uncertainty arises from the CP violation phase, and this is understandable
because in the lepton sector, this parameter has not been determined with good precision. The associated numerical
entries for the lepton mass matrices with five texture zeros are (in eV): An = 0.0251821, Bn = (−0.0122955 +
0.0244187i), Cn = (0.00427236 + 0.00689527i), En = 0.0194623, A` = 1671.71 × 106, |B`| = 432.237 × 106, |C`| =
7.57544× 106, and phases θ1 = 0.154895 and θ2 = 2.01797. The phases of B` and C` were absorbed in Bn and Cn by
means of a redefinition, through a WBT, in a previous step.

By construction, the WBT formalism reproduces the mixing matrix, the mass of charged leptons, and the neutrino
mass squared differences. As input parameters, we used the central values of the global fit reported by the Nu-FIT
collaboration (with SK atmospheric data) [68]. When comparing with the method of least squares, in the WBT
formalism, the numerical results do not deviate from the experimental values, as shown in Table III.

θ12 (◦) θ23 (◦) θ13 (◦) δCP (◦) δm2
21 (eV 2) δm2

31 (eV 2) me (MeV) mµ (MeV) mτ (MeV)

33.82 48.6 8.60 221 7.39× 10−5 2.528× 10−3 0.510999 105.658 1776.86

TABLE III: Output values in our analysis.

IV. CONCLUSIONS

In this analysis, we explore the consequences of extending the SM with three right-handed neutrinos that allow nine
additional complex Dirac mass terms for the neutral lepton sector, excluding the possibility of having bare Majorana
masses. In this extended model, it is not possible to determine the neutrino masses from first principles; however, as
it is well known in the literature, by imposing discrete or continuous symmetries or, in an equivalent way, a texture
for the lepton mass matrices, it is possible to determine the neutrino masses. This is not a trivial exercise since
the number of texture-zeros and the corresponding free parameters must be adjusted in order to obtain consistent
physical results and predictions. Under these conditions, an ansatz for the lepton mass matrices emerges from the
quark-lepton similarity, allowing us to extend the analysis of the mass matrices from the quark sector to the lepton
sector, which is a natural and important question. This allowed us to consider, without losing generality, the mass
matrices of the lepton sector as Hermitian in such a way that it is possible to apply the WBT formalism without
any restriction. Taking advantage of the large number of techniques developed in the quark sector, the texture-zeros
facilitate the analysis for obtaining the lepton masses and the PMNS mixing matrix. The texture-zeros in the lepton
mass matrices can be derived from additional hidden symmetries that do not allow certain inputs into the Yukawa
Lagrangian; however, this is not the purpose of the present work and we leave this exploration for future studies.

Two different five texture zeros for the Hermitian lepton mass matrices were considered, one with three zeros in
the neutral sector and two in the charged sector, and the other one with two texture zeros in the neutral sector and
three in the charged one. In order to obtain reliable results, we used two different approaches, assuming for both a
normal ordering for the neutrino physical masses. By counting the degrees of freedom in the lepton sector, and after
making use of the polar theorem of matrix algebra and the consequences of the WBT, we have concluded that with
five texture zeros in the Hermitian lepton mass matrices, only one prediction can be achieved. For the first case,
we started by considering the five independent texture structures presented for quarks in Ref. [13, 14], and modified
them until we determined the optimum structure that has been reported in this study. To the best of our knowledge,
the texture analyzed in our study has not been considered in the literature so far. For the second case, we used the
second form given in Ref [13, 14]. In both cases, the mass of the lightest neutrino can be considered as a prediction
of the models studied.

The first analysis, based on a least squares approach, was used to adjust the lepton masses and the mixing parameters
to their corresponding experimental values. It was implemented for the texture with three zeros in the neutral sector
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and two in the charged one. In this approach, the fit of the mixing parameters to the reported values in the literature
is below two sigmas, with an acceptable goodness of fit. The best fit for the lightest neutrino mass in this case was
m1 ≈ (3.9±0.6

0.8)× 10−3 eV, which is similar to reported values based on other assumptions [34–36].
The second analysis was a purely algebraic and numerical study, based on the WBT approach. It was implemented

for the texture with three zeros in the charged lepton sector and two in the neutral one. The prediction for the lightest
neutrino mass was (3.5 ± 0.9) × 10−3 eV, which is in agreement with the previous result. It must be noted that in
this case, the numerical results do not deviate from the experimental results.

For the case of Majorana masses, there are several studies predicting a mass of a few milli-electron volts for the
lightest neutrino [34–36, 74, 75], and these values are of the same order of magnitude as the results reported in this
work. Most of these results are reported by Fritzsch et al., except the reference [75], where the problem is analyzed
by assuming hierarchical neutrino masses and minimal flavor symmetry breaking. In this work, they claim that their
analysis is valid for Dirac or Majorana masses. Subsequently, they reported a mass of a few meV for the lightest
neutrino.

The two different five texture-zeros proposed in Eqs. (4) and (12) are not equivalent in the sense that there is no
WBT relating them.
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Appendix A: Parameter counting

In this section, we will show that the lepton mass matrices can be considered Hermitian without any loss of
generality. After spontaneous symmetry breaking of SU(2)⊗ U(1)X → U(1)Y , the Yukawa Lagrangian of the lepton
sector assumes the following form in the space of interactions:

− LD = ¯̀′
LM

′
``
′
R + ν̄′LM

′
nν
′
R + h.c, (A1)

where ν′L,R = (ν′e, ν
′
µ, ν
′
τ )TL,R and `′L,R = (e′, µ′, τ ′)TL,R (the upper T stands for transpose). The most general mass

matrices of the charged M ′` and neutral M ′n sectors, contain 36 free parameters. The polar decomposition theorem [76,
77] states that any matrix T , real or complex, can be written as

T = HU,

where H is a positive operator (Hermitian operator with positive eigenvalues) and U is a unitary matrix. Therefore,
we can write the mass matrices as follows:

M ′` = H ′`U
′
`, M ′n = H ′nU

′
n. (A2)

Since the right-handed fermions are singlets under the SM group, the unitary matrix can be absorbed in these fields 3

in such a way that we can write the Lagrangian in terms of Hermitian mass matrices:

−LD = ¯̀′
RH
′
``
′
L + ν̄′RH

′
nν
′
L + h.c.

H ′` and H ′n are defined positive, however, negative eigenvalues are needed to have zeros in the diagonal [62], and this
can be solved easily by redefining the right fields with a phase. The two mass matrices M` and Mn are arbitrary
complex 3 × 3 matrices with 36 free parameters, and by limiting our analysis to Hermitian matrices, we halved this
number. Of the remaining 18 free parameters (i.e., the number of off-diagonal elements in both matrices divided into
2), six are phases, five of them can be absorbed in a redefinition of the lepton fields [59, 60], from which, one CP
violating phase remains.

3 There are cases where this process does not apply. For example, in left-right handed models where the right fields transform under
SU(2), the unitary component cannot be absorbed.
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With 12 real free parameters, we have to explain: three charged lepton masses, two squared mass differences for
the neutral sector, and three mixing angles, totalizing 8 experimental restrictions. To make predictions, it is usual to
set zero some entries of the mass matrices; however, as shown in the references [12, 61, 62], given any two 3× 3 quark
mass matrices M`, Mn there is always a WBT such that the new mass matrices M ′`, M

′
n have three texture-zeros,

without implying a relation between the physical quantities. That is to say, of the 12 real parameters (which could
be mass matrix elements) it is possible to make 3 of them equal to zero in such a way that finally we are left with 9
free parameters and 8 experimental restrictions.

To ensure an identical number of variables and constraints it is necessary an additional texture-zero (equivalent to
4 texture zeros) such that it is possible to solve for all the parameters in the mass matrices, including for the lightest
neutrino mass. With two physical texture-zeros (i.e., five texture zeros in M` and Mn) the number of free parameters
reduces to 7 which is precisely the number of real parameters in our mass matrices. In this case, the number of
experimental restrictions exceeds the number of free parameters, the problem is over-constrained and not all textures
are going to be consistent with the experimental values. The textures reported in this work can adjust the 8 physical
quantities simultaneously with 7 real parameters representing a highly non-trivial result (For a review on these topics,
see [12]).
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