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Abstract

Proca’s electrodynamics describes a theory of massive
photons which is not gauge invariant. In this paper we
show that the gauge invariance is recovered if a scalar
field is properly incorporated into the theory. We followed
the Dirac’s technique to perform a detailed analysis
of the constraint structure of the theory. Appropriate
gauge conditions were derived to eliminate the first
class constraints and obtain the Dirac’s brackets of
the independent dynamical variables. Alternatively, the
generalized symplectic formalism method is used to study
the gauge invariance Proca’s electrodynamics theory. After
fixing the gauge, the generalized brackets are calculated and
the equivalence with the Dirac’s brackets is shown.
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Resumen

La electrodinámica de Proca describe una teoŕıa de fotones
masivos que no es invariante de gauge. En este trabajo
se mostrara que la libertad de gauge es restaurada si
un campo escalar es apropiadamente incorporado en la
teoŕıa. El método de Dirac es utilizado para realizar
un detallado análisis de la estructura de v́ınculos de la
misma. Apropiadas condiciones de gauge fueron derivadas
con el fin de eliminar los v́ınculos de primera clase y
obtener los corchetes de Dirac entre las variables dinámicas
independientes. De manera alternativa, la formulación
simpléctica generalizada es utilizada para estudiar la teoŕıa
electromagnética de Proca invariante de gauge. Después de
fijar el gauge, los corchetes generalizados son calculados y
la equivalencia con los corchetes de dirac es mostrada.

Palabras clave: Método de Dirac, Formalismo de Faddeev-Jackiw,

Análisis de v́ınculos, Corchetes de Dirac, Corchetes Generalizados.

Introduction

Quantum electrodynamics establishes a constraint on the rest mass
of photon which is proposed to be zero. However, in nonzero
photon mass could exist a low level that the present experiments
cannot reach. The uncertainty principle establishes that the photon
mass could be estimate as Mγ ≈ h̄

∆tc2
in the magnitude of about

10−66 g as the age of the universe is about 1010 years. Although
such infinitesimal mass is extremely difficult to be detected, a
massive QED is not only simpler theoretically than the standard
theory [1], it also provides a fairly solid framework for analyzing
the far reaching implications of the existence of a massive photon
which would have for physics. Actually, some of these possible
effects, such as variation of the speed of light [2], the deviations
of Coulomb’s law [3] and Ampère’s law [4], the existence of
longitudinal electromagnetic waves [5], and the additional Yukawa
potential of magnetic dipole fields [6, 7], were seriously studied.
The massive electrodynamics or Proca’s electrodynamics is the
simplest model in which the photon has a small mass. Proca’s
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electromagnetic field theory can be constructed in a unique way by
adding a mass term to the Lagrangian for the electromagnetic field,
namely, the Proca field is described by the following lagrangian
density,

L = −1

4
F µνFµν +

1

2
M2AµA

µ, (1)

with Fµν ≡ ∂µAν − ∂νAµ. The parameter M can be interpreted as
the photon rest mass. In this spirit, the characteristic scaling length
M−1 becomes the reduced Compton wavelength of the photon,
which is the effective range of the electromagnetic interaction.
Nevertheless, the mass term violates gauge invariance of the theory.

Cornwall [8] showed that in the Jackiw-Johnson model [9] is not
possible to add a symmetry breaking mass without destroying
renormalizability because the term violates the Ward identity.
However, the gauge invariance can be recovered if a nonlocal,
nonpolynomial terms is added to the Lagrangian which is invariance
gauge in a restricted sense.

In this work we are going to follow the Cornwall procedure and
recover the gauge invariance of the Proca theory. We will study
in a consistent way the canonical constraint structure of the
theory following the Dirac’s procedure [10, 11]. We determine
the Hamiltonian that generates the evolution of the system and
considers the full gauge freedom . Appropriated gauge conditions
will be deduced in order to calculate the Dirac brackets.

However, the mail goal of Dirac’s method is to obtain the Dirac
brackets, which are the bridge to the commutators in quantum
theory. With the categorization of the constraints as first or second
class, primary or secondary, this formalism has become one of the
standards for the analysis of constrained theories. Nevertheless,
Faddeev and Jackiw [12] proposed a geometric method for the
symplectic quantization of constrained systems. This method is
based on Darboux’s theorem [13] in which we do not need to
introduce primary constraints as in the Dirac formalism. Also, the
classification of the constraints is not necessary in this method,
since all the constraints are held to the same standard [14–16].

The essential point of the symplectic quantization method is to
make the system into a first order Lagrangian with some auxiliary
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fields, but the method does not depend on how the auxiliary fields
are introduced to make the first order Lagrangian [12, 13]. The first
order Lagrangian, which consists of some symplectic variables and
their generalized canonical momenta, gives the geometric structure
of the manifold through the symplectic two form matrix. The
classification of the system as constrained or unconstrained in
the first order Faddeev-Jackiw formalism depends on the singular
behavior of the symplectic two form matrix.
In this work we are going to study the symplectic quantization
Proca’s electrodynamics deriving the generalized symplectic
brackets and showing that they are equivalents to the Dirac
brackets.

Structure of Constraints

The Proca field which is described by (1) is no gauge invariance,
however, it is possible to add certain nonlocal, nonpolynomial term
to (1) which guarantees gauge invariance. If the transformation

Aµ (x)→ Aµ (x) + ∂µΛ (x) ,

is performed on the mass term, we obtain

1

2
M2AµA

µ → 1

2
M2 (Aµ + ∂µΛ ) (Aµ + ∂µΛ) .

Now, we are going to replace the gauge parameter in the following
way,

Λ→ θ ≡ −1

e

1

∂2
∂µA

µ.

Thus, we define the mass term

1

2
M2

[
Aµ +

1

e
∂µθ

]2

, (2)

which is invariant under the following gauge transformations:

Aµ (x)→ Aµ (x) + ∂µΛ (x) , θ (x)→ θ (x)− eΛ (x) , (3)
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as long as ∂2θ 6= 0. Here, θ (x) is an auxiliar escalar field and e is a
coupling constant. Thus, we come to the following effective gauge
invariance Lagrangian density:

L = −1

4
F µνFµν +

1

2
M2

[
Aµ +

1

e
∂µθ

]2

. (4)

From (4), we find the Euler-Lagrange equations

∂νF
νµ +M2Aµ = −1

e
M2∂µθ , ∂ν

[
Aν +

1

e
∂νθ

]
= 0, (5)

and the canonical momenta associated to the fields Aν and θ are:

πµ =
∂L

∂ (∂0Aµ)
= −F 0µ , pθ =

∂L
∂ (∂0θ)

=
M2

e

[
A0 +

1

e
∂0θ

]
.

(6)
respectively. Then, from (6) we get the set of dynamics relation
dynamical relation,

∂0Ak = πk + ∂kA0 , ∂0θ =
e2

M2
pθ − eA0, (7)

and one primary constraints [10, 11],

Ω1 ≡ π0 ≈ 0. (8)

The canonical Hamiltonian is given by

HC =

∫
d3y HC =

∫
d3y

[
πµ∂0Aµ + pθ∂0θ − L

]
(9)

=

∫
d3y

{
1

2

(
πk
)2

+
1

2

e2

M2
p2
θ + πk∂kA0 − eA0pθ

+
1

4
FklFkl +

1

2
M2

[
Ak +

1

e
∂kθ

]2
}
.

Following the Dirac’s procedure [10, 11], we define the primary
Hamiltonian HP adding to the canonical Hamiltonian the primary
constraints with their respective Lagrange multipliers

HP ≡ HC +

∫
d3y u1 (y) Ω1 (y) , (10)
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where u1 is the multipliers related to the electromagnetic
constraints. The fundamental Poisson brackets (PB) between the
variables of the phase space (Aµ, θ, π

ν , pθ) are,{
Aµ (x) , πν (y)

}
= δ ν

µ δ
3 (x− y) ,

{
θ (x) , pθ (y)

}
= δ3 (x− y) .

(11)
The Dirac’s procedure [10, 11] tell us that the primary constraints
must be preserved in time (consistence condition) under time
evolution generated by the primary Hamiltonian by requiring that
they have a weakly vanishing PB with HP . Thus, such requirement
on the constraints (8) yields

Ω̇1 (x) =
{
π0 (x) , HP

}
= ∂xkπ

k + epθ ≡ Ω2 (x) ≈ 0, (12)

i.e., the consistence condition of Ω1 gives a secondary constraint Ω2

which is associated with the Gauss’s law of the theory. It is easy
to verify that there are not further constraints generated from the
consistence condition of the Gauss’s law because it is automatically
conserved,

Ω̇2 (x) =
{

Ω2 (x) , HP

}
= 0. (13)

Then, there are not more constraints and (8) and (12) constitute
the full set of constraints of the theory.

Constraint classification and gauge condition

The constraints Ω1 and Ω2 have vanishing PB among them,
therefore, they are first class constraint [10, 11]. Here we are in
position to write the total Hamiltonian

HE ≡ HC +

∫
d3y

[
u1 (y) Ω1 (y) + u2 (y) Ω2 (y)

]
, (14)

where u2 is de Lagrange multiplier associated to the secondary first
class constraint Ω2. Now, we are able to calculate the canonical
equations of the system for the variables (Aµ, θ, π

ν , pθ). For Aµ we
have the equations

Ȧµ = δ k
µ

[
πk + ∂kA0

]
− δ k

µ ∂ku
2, (15)
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which just means that the canonical variable Aµ is defined as a
linear combination of the still arbitrary Lagrange multipliers. The
Hamiltonian equations for the momenta πµ are given by,

π̇ν = δ ν
0

[
∂kπ

k + epθ
]

+ δ ν
k

{
∂lFlk −M2

[
Ak +

1

e
∂kθ

]}
. (16)

The time evolution of the dynamical variables of the scalar field
are:

θ̇ =
e2

M2
pθ − eA0 + eu2, (17)

ṗθ =
M2

e
∂k

[
Ak +

1

e
∂kθ

]
From (15), (16) and (17) it is easy to obtain

∂µF
µν +M2

[
Aν +

1

e
∂νθ

]
≈ 0, (18)

∂µ

[
Aµ +

1

e
∂µθ

]
≈ ∂0u

2.

These equations are compatible with the Lagrangian field equations
(5) only if suitable gauge conditions are chosen in order to eliminate
the Lagrange multiplier u2.

At this stage we consider the set of first-class constraints Ω1 and
Ω2, that must be considered as generators of gauge transformations.
Our objective is to use the gauge freedom in our system to fix
two components of Aν so that the first class constraints become
second class. The problem of choosing proper gauge conditions has
to be solved to fully eliminate the redundant variables of the theory
at the classical level and, therefore, to proceed with a consistent
quantization of the theory. Since π0 ≈ 0, one logical choice is to
set:

∆1 ≡ A0 ≈ 0. (19)

The second gauge gauge fixing condition can be determined by
closely inspect the Euler Lagrange equations of the system [17].
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Thus, if we look for the ν = 0 component of the (18) equation, it
produces

∂µF
µ0 +M2

[
A0 +

1

e
∂0θ

]
≈ ∂0

[
∂kAk +

M2

e
θ

]
≈ 0. (20)

Then, the equation (20) will hold for all time only if:

∆2 ≡ ∂kAk +
M2

e
θ ≈ 0. (21)

Thus, (12) is similar to a secondary constraint following from the
gauge constraint, therefore, it can be considered like the second
gauge condition.

Dirac Brackets

The next step is to calculate Dirac Brackets for the set of ten
constraints of the theory. The set of the first class constraints and
their gauge fixing conditions, defines as:

Ψ1 ≡ π0 ≈ 0,

Ψ2 ≡ ∂kπ
k + epθ ≈ 0,

Ψ3 ≡ A0 ≈ 0, (22)

Ψ4 ≡ ∂kAk +
M2

e
θ ≈ 0,

constitute a set of second class constraints. With (22), we can
construct the matrix of PB with elements:

Cij (x, y) ≡
{

Ψi (x) ,Ψj (y)
}
, (23)

and with the following matricial representation:

C (x, y) =


0 0 −1 0
0 0 0 Dx

1 0 0 0
0 −Dx 0 0

 δ3 (x− y) , (24)
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where Dx ≡ ∇2
x−M2. The inverse of the matrix is calculated from

the following relationship,∫
d3z Cik (x, z)C−1

kj (z, y) = δijδ
3 (x− y) . (25)

Imposing the boundary condition that the fields vanish at infinity,
we can find that the in inverse of (23) exists and takes the form

C−1
ij (x, y) =


0 0 1 0
0 0 0 − 1

Dx

−1 0 0 0
0 1

Dx
0 0

 δ3 (x− y) . (26)

With this inverse we are able to define the first Dirac Brackets for
two observables A (x) and B (x) [10, 11],

{
A (x) ,B (y)

}
D

=
{

A (x) ,B (y)
}
−
∫
d3ud3v

{
A (x) ,Ψi (u)

}
C−1
ij (u, v)

{
Ψj (v) ,B (y)

}
(27)

This definition implies the elimination of the second-class constrains
and the definition of an extended Hamiltonian where Ωi are strongly
zero. Under the definition of Dirac brackets, the constraints (22) are
strongly zero, i.e.,

π0 = 0 , A0 = 0

pθ = −1

e
∂kπ

k , θ = − e

M2
∂kAk. (28)

The relation (28) determines that Ak and πk could be considered as
independent variables of the theory, therefore, the Dirac brackets
associated to them may be computed from (27) to be

{
Ak (x) , πl (y)

}
D

=

(
δ l
k −

∂xk∂
x
l

Dx

)
δ3 (x− y) (29)
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Now, using the relations (28) we can deduce the other set of DB,
i.e.: {

θ (x) , pθ (y)
}

D
=

(
1 +

M2

Dx

)
δ3 (x− y) ,{

Ak (x) , pθ (y)
}

D
= −M

2

e

∂xk
Dx

δ3 (x− y) , (30){
πl (x) , θ (y)

}
D

= −e ∂
x
l

Dx

δ3 (x− y) .

Under the definition of the Dirac brackets, the Hamiltonian which
determines the evolution of the system in the reduced phase space
is

H =

∫
d3y

[
1

2

(
πk
)2

+
1

2M2
∂kπ

k∂lπ
l +

1

4
FklFkl (31)

+
1

2
M2

(
Ak −

1

M2
∂k∂lAl

)2
]
.

Symplectic analysis for the Proca’s electrodynamics

The initial set of symplectic variables defining the extended space
is given by the set ξ

(0)
k =

(
Ak, π

k, θ, pθ, A0

)
, and so the starting

Lagrangian density is written in first order as follow [12, 13] 1:

L(0) =
1

2

(
πk
)2

+
1

2

e2

M2
p2
θ −

1

4
FklFkl −

1

2
M2

[
Ak +

1

e
∂kθ

]2

L(0) = Ȧkπ
k + θ̇pθ −H(0), (32)

where the zero iterated symplectic potential has the following form:

H(0) ≡ 1

2

(
πk
)2

+
1

2

e2

M2
p2
θ + πk∂kA0 − eA0pθ +

1

4
FklFkl

+
1

2
M2

[
Ak +

1

e
∂kθ

]2

. (33)

1See Appendix A
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Using the initial set of symplectic variables ξ
(0)
k , we have from (32)

the canonical momenta

a
(0)
Ak

= πk , a
(0)

πk
= 0 , a

(0)
θ = pθ,

a(0)
pθ

= 0 , a
(0)
A0

= 0. (34)

Then, we obtain the zero iterated symplectic two-form matrix
defined by

f
(0)
AB (x,y) =

δa
(0)
B (y)

δξ(0)A (x)
− δa

(0)
A (x)

δξ(0)B (y)
, (35)

with the components

f
(0)
AB (x,y) =


0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

 δ3 (x− y) . (36)

The symplectic matrix is singular and it has a zero mode

ṽA(0) =
(

0 0 0 0 vA0 (x)
)
, (37)

where vA0 (x) is an arbitrary function. From this nontrivial
zero-mode, we have the following constraint

Ω(0) =

∫
d3xvA0 (x)

δ

δξA0
(x)

∫
d3yH(0)

(
ξ

(0)
k

)
= −

∫
d3xvA0 (x)

[
∂xkπ

k (x) + epθ (x)
]

= 0. (38)

With vA0 (x) arbitrary, the constraint is evaluated form (38) to be

Ω(0) ≡ ∂kπ
k + epθ = 0. (39)

According to the symplectic algorithm, the constraint (39)
is introduced in the Lagrangian density by using Lagrangian
multipliers, thus, the first iterated Lagrangian density is written
as

L(1) = πkȦk + pθθ̇ + Ω(0)λ̇−H(1), (40)



Canonical structure of gauge invariance Proca’s electrodynamics theory 37

where the first iterated symplectic potential is

H(1) ≡ H(0)

Ω(0)=0
=

1

2

(
πk
)2

+
1

2

e2

M2
p2
θ +

1

4
FklFkl

+
1

2
M2

[
Ak +

1

e
∂kθ

]2

(41)

Now, we enlarged the space with the first iterated set of symplectic
variables defined by ξ

(1)
k =

(
Ak, π

k, θ, pθ, λ
)
. The new canonical

one-form is

a
(1)
Ak
→ πk , a

(1)

πk
→ 0 , a

(1)
θ → pθ,

a(1)
pθ
→ 0 , a

(1)
λ → ∂kπ

k + epθ (42)

and the first iterated symplectic matrix is written as

f
(1)
AB (x,y) =

δa
(1)
B (y)

δξA(1) (x)
−

δa
(1)
A (x)

δξB(1) (y)
(43)

=


0 −δkl 0 0 0
δlk 0 0 0 −∂xk
0 0 0 −1 0
0 0 1 0 e
0 −∂xl 0 −e 0

 δ3 (x− y)

The modified symplectic matrix after the first iteration is again
singular. As it can be seen, there is one new zero-mode associated
to this matrix and it is written as:

ṽA(1) (x) =
(
∂xkα (x) 0 −eα (x) 0 α (x)

)
, (44)

where α (x) is a new arbitrary quantity. A new constraint can be
result from (44), then, we have that

Ω(1) =

∫
d3xṽA(1) (x)

δ

δξ
(1)
A (x)

∫
d3yH(1) (y)

=

∫
d3xα (x)

{
∂xi ∂

x
kFki (x)−M2∂xi

[
Ai (x) +

1

e
∂xi θ (x)

]
+M2∂xk

[
Ak (x) +

1

e
∂xkθ (x)

]}
= 0 (45)
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Thus, Ω(1) is identically zero, then, the relation (45) indicates that
there are no more constraints associated in the theory and as a
result the symplectic matrix remains singular what characterizes
the theory as a gauge theory.
In order to obtain a regular symplectic matrix a gauge fixing term
must be added to the symplectic potential. We choose the gauge
Θ = ∂kAk+M2

e
θ = 02. Using the consistency condition by Lagrange

multiplier η (x), which will increase the size of the configuration
space, we obtain the second iterative Lagrangian, i.e.:

L(2) = Ȧkπ
k + θ̇pθ + Ω(0)λ̇+ Θη̇ −H(2) (46)

where

H(2) = H(1)
Θ=0 =

1

2

(
πk
)2

+
1

2

e2

M2
p2
θ +

1

4
FklFkl

+
1

2
M2

[
Ak +

1

e
∂kθ

]2

. (47)

As before, we set the symplectic variable ξ
(2)
k =

(
Ak, π

k, θ, pθ, λ, η
)

and from (47) we determine the canonical momenta

a
(2)
Ak
→ πk , a

(2)

πk
→ 0 , a

(2)
θ → pθ,

a(2)
pθ
→ 0 , a

(2)
λ → ∂kπ

k + epθ,

a(2)
η → ∂kAk +

M2

e
θ. (48)

Now, from (48) we obtain the second-iterated symplectic two-form
matrix

f
(2)
AB (x,y) =

δf
(2)
B (y)

δξA(2) (x)
−

δf
(2)
A (x)

δξB(2) (y)
(49)

=



0 −δkl 0 0 0 −∂xk
δlk 0 0 0 −∂xk 0

0 0 0 −1 0 M2

e
0 0 1 0 e 0
0 −∂xl 0 −e 0 0

−∂xl 0 −M
2

e 0 0 0

 δ3 (x− y)

2See equation (21).
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This matrix is still antisymmetric because f
(2)
AB (x,y) =

−f (2)
BA (y,x). Since this matrix is not singular, we finally have the

inverse matrix after a laborious calculation as follows:

[
fAB(2)

]−1
(x,y)=



0 ∆kl 0 −M2

e

∂xk
Dx

0 − ∂xk
Dx

−∆kl 0 e
∂xk
Dx

0 − ∂xk
Dx

0

0 e
∂xl
Dx

0 ∆ 0 e
Dx

−M2

e

∂xl
Dx

0 −∆ 0 M2

e
1
Dx

0

0 − ∂xl
Dx

0 −M2

e
1
Dx

0 − 1
Dx

− ∂xl
Dx

0 − e
Dx

0 1
Dx

0


δ3 (x− y) ,

(50)

where

∆kl ≡ δkl −
∂xk∂

x
l

Dx
, ∆ ≡ 1 +

M2

Dx
. (51)

On these relations and Eq. (58), we immediately identify the
generalized brackets as follow:{

Ai (x) , πj (y)
}

=

(
δij −

∂xi ∂
x
j

Dx

)
δ3 (x− y) ,{

θ (x) , pθ (y)
}

=

(
1 +

M2

Dx

)
δ3 (x− y) , (52){

Ai (x) , pθ (y)
}

= −M
2

e

∂xi
Dx

δ3 (x− y) ,{
πk (x) , θ (y)

}
= −e ∂

x
k

Dx
δ3 (x− y) .

which are equivalents with (29) and (30).

Remarks and conclusions

In this paper we have analyzed the canonical structure of the gauge
invariance Proca’s electrodynamics. We have recover the gauge
invariance adding a mass term with the help of an auxiliary field
which has an appropriated gauge transformation.
We constructed a consistent Hamiltonian formulation for the theory
that includes the constraints and their algebra. The Hamiltonian
that generates the evolution of the system and considers the full
gauge freedom is determined. We studied the problem of gauge
fixing for the theory, determining the appropriated gauge condition
which result of the motion equations.
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The fundamental Dirac brackets for the dynamical variables have
been constructed and are compatible with the constraints.
In this paper we have studied Proca electrodynamics gauge
invariance with the symplectic quantization method. We have
shown that the symplectic approach is more intuitive in the
sense that the constraints are related to the generalized canonical
momenta and the Lagrange multipliers to the symplectic variables
in the enlarged symplectic structure of the constrained manifold.
For the Proca electrodynamics we have shown that the number of
the constraints is fewer and the structure of these constraints is very
simple because we do not need to distinguish first or second class
constraints, primary or secondary constraints, etc. We have easily
obtained the Dirac brackets by reading directly from the inverse

matrix
[
fAB(2)

]−1
of the symplectic two form matrix. Finally, we

can observe that the potential symplectic obtained at the final stage
of iterations is exactly the Hamiltonian which is obtained through
several steps with the usual Dirac formulation of the constrained
systems.
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A. Faddeev Jackiw formalism

We start by reviewing very briefly the Faddeev-Jackiw (FJ)
quantization method [12, 13] in field theories A general first
order Lagrangian in time derivative is described by the symplectic
variables ξA is given by

L(0) = a
(0)
A (ξ) ξ(0)A −H(0) (ξ) , (53)

where ξi = ξi (x) = ξi (x, t) are the field variables. Based on
the canonical one-form aA (ξ) the symplectic matrix fAB (x, y) is
defined by

f
(0)
AB (x, y) =

δa
(0)
B (y)

δξ(0)A (x)
− δa

(0)
A (x)

δξ(0)B (y)
, (54)
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which is called the symplectic two-form. Generally, the geometric
structure of the theory is fully described by the canonical
generalized canonical momenta a

(0)
A (ξ), and the symplectic matrix

f
(0)
AB gives the geometric structure of the phase space. Using

variational principle, we obtain the dynamical equations of motion:

f
(0)
AB (ξ) ξ̇(0)B =

δH(0) (ξ)

δξ(0)A
. (55)

Theories are classified as unconstrained and constrained depending
on whether f

(0)
AB has an inverse or not, respectively. In the

unconstrained case, when f
(0)
AB has an inverse, we can obtain the

equations of motion such as

ξ̇(0)A (x) =

∫
d3y

[
f (0)AB (x,y)

]−1 δH(0) (ξ)

δξ(0)B (y)
, (56)

In this case, we can obtain the generalized symplectic brackets as

ξ̇(0)A (x) =
{
ξ(0)A (x) ,H(0) (ξ)

}
=
{
ξ(0)A (x) , ξ(0)B (y)

} ∂H(0) (ξ)

∂ξ(0)B (y)

=
[
f (0)AB (x,y)

]−1 ∂H(0) (ξ)

∂ξ(0)B (y)
. (57)

Compared (55) with (57) we have the relations between the
symplectic two-form matrix and the generalized symplectic bracket{

ξ(0)A (x) , ξ(0)B (y)
}

=
[
f (0)AB (x,y)

]−1
, (58)

which correspond to the Dirac brackets [18].
When the symplectic matrix is singular leads us to constraints [14–
16], which can be expressed as

Ωα ≡
∫
d3x vAα (x)

δ

δξ(0)A (x)

∫
d3yH(0) (ξ) = 0, α = 1, 2, .....,m

(59)

where vAα (x) are the zero-modes associated to the matrix f
(0)
AB and

α denotes the the number of constraints. The quantities Ω(α) are
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the constraints in the FJ symplectic formalism, and are introduced
in the Lagrangian by using Lagrange multipliers:

L(1)
(
ξ, ξ̇
)

= a
(0)
A (ξ) ξ(0)A − λαΩα −H (ξ) . (60)

In this point one can run the symplectic algorithm once again.
Enlarging the configuration space by considering the set of
variables ξA(1) =

(
ξ, λ(α)

)
, by redefining the λ(α) variables, relating

to ζ̇ we can set
Λα → −ζ̇α,

therefore, the first iterated lagrangian is written as

L(1) = a
(0)
A (ξ) ξ̇(0)A+Ωαζ̇

α−H(1) (ξ) = a
(1)
A (ξ) ξ̇A(1)−H(1) (ξ) , (61)

where
H(1) (ξ) = H (ξ)

∣∣∣
Ω(α)=0

. (62)

In terms of the new set of dynamical variables ξA(1) one can now
introduce a new symplectic matrix as,

f
(1)
AB (x, y) =

δa
(1)
B (y)

δξA(1) (x)
− δa

(1)
A (x)

δξB(1) (y)
. (63)

If the matrix f
(1)
AB is regular, then we have succeeded in eliminating

the constraints. If not, one should repeat the procedure above
as many times as necessary. If we get the nonsingular fAB after
a finite number of iterations, we stop the iterations and obtain
the generalized symplectic brackets from the inverse of fAB, the
brackets are exactly those the Dirac brackets. On the other hand, in
some cases the iterations are repeated infinitely. In such a case, the
zero mode plays an important role, generating a gauge symmetry.
Then, we need some gauge fixing conditions Φσ with σ = 1, 2, ...
number of gauge conditions. Now, the basic spirit of the method
is maintained exactly the same because the gauge fixing conditions
are nothing but a kind of constraints. We may write the gauge fixed
Lagrangian as follows:

L(k) = a
(k)
A (ξ) ξ̇A(k) + Φσχ̇

σ −H(k) (ξ) , (64)
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where the subscript (k) denotes the iterations numbers the generate
the modified symplectic matrix and the potential symplectic at the
(k) iteration

H(k) (ξ) = H(k−1) (ξ)
∣∣∣
Ω

(k−1)
α =0

. (65)

The relation (64) is most general form of the first order Lagrangian.
Note that the constraints and the gauge fixing conditions are
considered as the generalized canonical momenta, while the
Lagrangian multipliers are as their conjugated variables in the
symplectic formalism. After following the procedure as above, we
obtain the generalized symplectic brackets, which are the bridge to
the quantum commutators.
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