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In this article, we employ transverse Takahashi identities to impose valuable non-perturbative
constraints on the transverse part of the fermion-photon vertex in terms of new form factors, the so
called Yi functions. We show that the implementation of these identities is crucial in ensuring the
correct local gauge transformation of the fermion propagator and its multiplicative renormalizability.
Our construction incorporates the correct symmetry properties of the Yi under charge conjugation
operation as well as their well-known one-loop expansion in the asymptotic configuration of incoming
and outgoing momenta. Furthermore, we make an explicit analysis of various existing constructions
of this vertex against the demands of transverse Takahashi identities and the previously established
key features of quantum electrodynamics, such as gauge invariance of the critical coupling above
which chiral symmetry is dynamically broken. We construct a simple example in its quenched version
and compute the mass function as we vary the coupling strength and also calculate the corresponding
anomalous dimensions γm. There is an excellent fit to the Miransky scalling law and we find γm = 1
rather naturally in accordance with some earlier results in literature, using arguments based on
Cornwall-Jackiw-Tomboulis effective potential technique. Moreover, we numerically confirm the
gauge invariance of this critical coupling.

PACS numbers: 12.20.-m, 11.15.Tk, 11.15.-q, 11.10.Gh

I. INTRODUCTION

A quantum field theory (QFT) can be considered com-
pletely solved if we are able to compute its full set of n-
point Green functions. However, these Green functions
are infinite in number. Moreover, these are all inter-
twined through highly non-linear coupled integral equa-
tions, known as the Schwinger-Dyson equations (SDEs).
A brute force method to compute them is a wild goose
chase.

We believe that a satisfactory determination of rele-
vant physical observables through a systematic trunca-
tion scheme for this infinite tower of equations is achiev-
able if we preserve the key features and symmetries of the
underlying theory. Perturbation theory (PT) provides
an excellent example of such an approximation scheme.
However, when the interaction strength grows and can
no longer be used as a perturbative expansion parame-
ter, one resorts to truncations which need to be carefully
constructed in order to retain the essential features of
the original theory, while maintaining contact with ex-
perimental data at the same time. Quantum chromo-
dynamics (QCD) is a realization of this scenario in its
infrared domain. Considerable progress has been made
in the last decades to study its first few Green functions,
e.g., the gluon propagator [1–8] and the quark-gluon ver-
tex [9–18] whose knowledge consequently provides pre-
dictions for QCD and hadron physics, e.g., [19–23]; also

see reviews [24–28] and references therein.
In several hadronic physics studies, such as electromag-

netic and transition form factors [20, 22, 29–32], probes
are generally electromagnetic in nature and many SDE
calculations crucially rely on how photons interact with
quarks. Thus, quantum electrodynamics (QED) serves
as a useful platform to study SDE truncations and pro-
vide improvements to preserve its key features, such as its
gauge invariance, renormalizability and the recuperation
of the well-known S-matrix perturbative expansion for
its Green functions in the weak coupling regime, which it
maintains at all accessible energies. In particular, study
of the fermion propagator in QED generally amounts to
requiring a physically meaningful and reliable Ansatz for
the three-point fermion-photon vertex. Gauge invariance
provides an essential ingredient in this connection. The
gauge technique of Salam, Delbourgo and collaborators
was developed to solve the constraints of the well-known
Ward-Fradkin-Green-Takahashi identity (WFGTI) [33–
36], writing the Green functions in terms of spectral rep-
resentations, [37–39]. However, such approach, despite
its elegant and formal results, [40, 41], is not amicable to
straightforward computations, [42]. The WFGTI allows
us to expand out the vertex in terms of a well-constrained
longitudinal part [43] and an undetermined transverse
part. Several efforts alternative to the gauge technique
start from making an Ansatz for this latter part and pro-
ceed from thereon.

A natural question to ask is if the transverse part can

ar
X

iv
:1

81
2.

02
28

0v
1 

 [
nu

cl
-t

h]
  6

 D
ec

 2
01

8



2

be constrained through any other symmetry principle?

Whereas the usual WFGTI relates the divergence of
the three-point fermion-photon vertex to the inverse
fermion propagator, there exist transverse Takahashi
identities (TTI) which play a similar role for the curl
of the fermion-photon vertex [44–48]. However, in ad-
dition to the inverse fermion propagator and the vector
vertex, these identities also bring into play a non-local
axial-vector vertex as well as new inhomogeneous tensor
and axial-tensor vertices. Consequently, TTI are richer
and more complicated in their structure. In past, they
have been verified to one-loop order, [49, 50]. More re-
cently, practical implications of TTI have been investi-
gated in [51, 52] to get insight into the non-perturbative
forms of vector and axial-vector vertices.

In this article, we intend to study constraints of TTI on
the transverse part of the fermion-photon vertex. Note
that TTI do not modify the usual WFGTI in any way.
However, we realize that they are crucially connected to
another consequence of local gauge covariance, namely,
Landau-Khalatnikov-Fradkin transformations (LKFT),
derived in [34, 53–55]. LKFT are a well defined set of
transformations which describe the response of the Green
functions to an arbitrary gauge transformation. These
transformations leave the SDEs and the WFGTI form-
invariant. LKFT potentially play an important role in
imposing valuable constraints on the fermion-photon ver-
tex and obtaining gauge invariant chiral symmetry break-
ing, see for example Refs. [56–71]. More recently, these
transformations have also been derived for QCD [72, 73].

Both the TTI and the LKFT (through the multiplica-
tive renormalizability (MR) of the fermion propagator)
constrain the transverse fermion-photon vertex. There-
fore, it is reasonable to seek a combined constraint which
would help us converge on pinning down this elusive part
of the vertex. The fact that MR constrains the transverse
vertex has already been known for some time [41, 74–76].
Later works in the literature involving similar considera-
tions in constructing a refined fermion-photon vertex can
be found in [11, 77–84].

An important issue relevant to our current work con-
cerns the usage of the TTI-constrained vertex to study
dynamical chiral symmetry breaking (DCSB) or dynam-
ical fermions mass generation as a consequence of en-
hanced interaction strength. This is a strictly non-
perturbative phenomenon and a transcendental topic in
QCD, where it induces measurable effects in numerous
hadron observables. Therefore, physically meaningful
truncations of QCD’s SDEs demand incorporation of
DCSB through the relevant Green functions, in particu-
lar the quark propagator and the quark-gluon vertex. Re-
garding the latter, valuable progress has been made both
in lattice, [85–91] and continuum studies. However, due
to the non-abelian nature of QCD, investigating the im-
pact of DCSB on the quark-gluon vertex, and vice versa,
from the first principles, is still a theoretical challenge. A
thorough investigation of the fermion-photon vertex and
chiral symmetry breaking in QED is likely to provide a

bench mark for the corresponding studies in QCD.

Although QED manifests a perturbative behavior at all
observable scales, an intense background electromagnetic
field can trigger a transition from perturbative to non-
perturbative dynamics, the well-known magnetic cataly-
sis, see for example [92–100]. Even a toy QED with an
artificially scaled up coupling exhibits this phenomenon.
Such a phase transition has long been studied. It is char-
acterized by a critical coupling, αc, above which DCSB
takes place, see [12, 77, 101] and references therein. Since
this critical coupling corresponds to a recognizable phase
transition, it is considered to be a physical observable,
and hence a gauge invariant parameter. This indepen-
dence of αc on the gauge parameter has long been used
as a further requirement to constrain the transverse ver-
tex [12], and we follow this argument in the present arti-
cle.

The TTI connect the transverse structure of the
fermion-photon vertex to a set of unknown scalar func-
tions Yi related to a non-local axial-tensor mentioned be-
fore. MR of the electron propagator implies that these
functions cannot be ignored. Instead, MR constrains
their form. This procedure involves an unknown func-
tion W (x) of a dimensionless ratio x of the incoming and
outgoing fermion momenta. It satisfies an integral con-
straint which guarantees MR of the electron propagator
in the leading logarithm approximation (LLA). Imple-
menting charge conjugation symmetry on the integration
kernels involved in the fermion propagator SDE, it is pos-
sible to parameterize Yi in terms of one single scalar, a
priori unknown function T (k2, p2), which encodes the
effect of the fully-dressed fermion-photon vertex on the
fermion propagator. This general procedure fixes three
of the Y -functions. An additional constraint comes from
demanding gauge independent chiral symmetry break-
ing. For the so called quenched approximation, it yields
a self-consistent solution for T (k2, p2).

In this article, we work in Euclidean space. Thus, for
γ-matrices we have: {γµ, γν} = 2δµν and γ†µ = γµ, where
δµν is the Euclidean metric. Furthermore, we define γ5 =
γ4γ1γ2γ3, with Tr [γ5γµγνγαγβ ] = −4εµναβ .

This paper is organized as follows: in Section II, we
review the WFGTI for the three-point vertex in QED,
define the longitudinal vertex, write down the transverse
part in a general basis, following [43], and highlight the
symmetry properties of the transverse form factors un-
der charge conjugation operation. In Section III, we in-
troduce abelian TTI for the vertex and expand out the
transverse form factors in terms of the Y -functions. We
then invert these relations and impose a perturbative
constraint on Yi in the asymptotic limit of k2 � p2. In
Section IV, SDE for the fermion propagator is presented.
We write it in terms of the Yi functions and discuss the
quenched approximation. In Section V, We study the
requirement of MR and the power law solution for the
wave function renormalization of the fermion propagator
within the LLA. We show how the requirement of MR
imposes an integral constraint on the form factors of the
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transverse vertex, in terms of the function W (x). In Sec-
tion VI, we discuss a few examples illustrating the need
and importance of the Y -functions. In Section VII, we
construct simple examples to study DCSB and see how it
naturally incorporates gauge independence of the critical
coupling αc. In Section VIII, we present our conclusions
and discuss prospects for future research.

II. VERTEX DECOMPOSITION

q=k−p

p

k

Γµ

FIG. 1: Diagrammatic representation of the full three-point
vertex Γµ(k, p), with momentum flow indicated.

In its general decomposition, the three-point fermion-
boson vertex can be written in terms of 12 independent
spin structures. For the kinematical configuration of
Fig. 1, the WFGTI associated with this vertex takes the
form

iqµΓµ(k, p) = S−1(k)− S−1(p) , (1)

where q = k−p. This identity allows us to split the vertex
as a sum of longitudinal and transverse components, as
suggested by Ball and Chiu [43]:

Γµ(k, p) = ΓLµ(k, p) + ΓTµ (k, p) . (2)

The longitudinal part ΓLµ(k, p) alone satisfies the WFGTI
(1), and consumes four of the twelve independent spin
structures (one of them is zero in QED), so that, [43]:

ΓLµ(k, p) = a(k2, p2)γµ +
b(k2, p2)

2
tµγ · t− ic(k2, p2)tµ(3)

with t = k + p, and

a(k2, p2) =
1

2

[
1

F (k2,Λ2)
+

1

F (p2,Λ2)

]
,

b(k2, p2) =

[
1

F (k2,Λ2)
− 1

F (p2,Λ2)

]
1

k2 − p2
,

c(k2, p2) =

[
M(k2,Λ2)

F (k2,Λ2)
− M(p2,Λ2)

F (p2,Λ2)

]
1

k2 − p2
, (4)

where Λ is an ultraviolet cut-off regulator. M and F
are the mass function and the wave function renormal-
ization, respectively, related to the fermion propagator
S(k) through

S(k) =
F (k2,Λ2)

iγ · k +M(k2,Λ2)
. (5)

At the tree level, F (k2,Λ2) = 1 and M(k2,Λ2) = m0,
where m0 is the bare mass of the fermion.

The transverse part ΓTµ (k, p) of the vertex decomposi-
tion (2), which remains undetermined by the WFGTI, is
naturally constrained by

qµΓTµ (k, p) = 0 . (6)

In general, the ultraviolet finite transverse vertex can be
expanded out in terms of 8 vector structures, and their
corresponding scalar form factors τi(k, p) [43]:

ΓTµ (k, p) =

8∑
i=1

τi(k, p)T
i
µ(k, p) . (7)

Moreover, for the kinematical configuration of Fig. 1, we
define

T 1
µ(k, p) = i [pµ(k · q)− kµ(p · q)] ,
T 2
µ(k, p) = [pµ(k · q)− kµ(p · q)] γ · t ,
T 3
µ(k, p) = q2γµ − qµγ · q ,
T 4
µ(k, p) = iq2 [γµγ · t− tµ] + 2qµpνkρσνρ ,

T 5
µ(k, p) = σµνqν ,

T 6
µ(k, p) = −γµ

(
k2 − p2

)
+ tµγ · q ,

T 7
µ(k, p) =

i

2
(k2 − p2) [γµγ · t− tµ] + tµpνkρσνρ ,

T 8
µ(k, p) = −iγµpνkρσνρ − pµγ · k + kµγ · p , (8)

with

σνρ =
i

2
[γν , γρ] . (9)

This basis is not exactly the one adopted in [43]. We
choose to work with a modification of this initial ba-
sis which was put forward in [102] and later employed
in [103] as well. This latter choice ensures all transverse
form factors of the vertex are independent of any kine-
matic singularities in one-loop perturbation theory in an
arbitrary covariant gauge.

As stated earlier in Section I, any Ansatz for the full
vertex must have the same transformation properties as
the bare vertex under charge conjugation operation. This
requires all the τis in (7) to be symmetric under the in-
terchange k ↔ p, except τ4 and τ6, which are odd:

τi(k, p) = τi(p, k) , i = 1, 2, 3, 5, 7, 8, (10)

τi(k, p) = −τi(p, k) , i = 4, 6. (11)

From Eq. (4), it is obvious that a(k2, p2), b(k2, p2) and
c(k2, p2) are symmetric under k ↔ p, as they should be,
in order to preserve the correct transformation properties
under charge conjugation operation for the full vertex.

Although the longitudinal scalar functions (4) are fixed
by the WFGTI (1), the transverse scalar functions in
decomposition (7) remain unknown. In the next section,
we introduce the TTIs for the three-point vertex in QED,
which provide a powerful tool in constructing these non-
perturbative transverse functions.
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III. TRANSVERSE TAKAHASHI IDENTITIES

The TTIs for vector (Γµ) and axial-vector (ΓAµ ) ver-
tices in QED, related to a fermion with bare mass m0,
read [51]:

qµΓν(k, p)− qνΓµ(k, p) = S−1(p)σµν + σµνS
−1(k)

+2im0Γµν(k, p) + tαεαµνβΓAβ (k, p)

+AVµν(k, p) , (12)

qµΓAν (k, p)− qνΓAµ (k, p) = S−1(p)σ5
µν − σ5

µνS
−1(k)

+tαεαµνβΓβ(k, p) + V Aµν(k, p) , (13)

where σ5
µν = γ5σµν , and Γµν(k, p) is an inhomoge-

neous tensor vertex. The last two tensor structures
in Eqs. (12,13), AVµν and V Aµν , are related to the mo-
mentum space expressions for non-local axial-vector and
vector vertices, whose definitions involve a gauge-field-
dependent line integral. These non-perturbative identi-
ties are valid for any covariant gauge, and they do not
have explicit dependence on the covariant gauge param-
eter.

The vector and axial-vector TTIs are intricately cou-
pled to each other via the non-local terms AVµν(k, p)

and V Aµν(k, p), which are complicated even at one-loop
order, [49, 50]. Following the procedure described in
Ref. [51], useful progress has been made to disentangle
this interdependence. In order to project out transverse
form factors from the TTIs, Eqs. (12,13), it is convenient
to introduce the following tensors

T 1
µν =

1

2
εαµνβ tα qβ , (14)

T 2
µν =

1

2
εαµνβ γα qβ . (15)

By contracting the axial-vector identity (13) with tensors
(14) and (15), the left-hand sides of the resulting equa-
tions reduce to zero, while the right-hand sides yield the
following result:

q · t t · Γ(k, p) = T 1
µν

[
S−1(p)σ5

µν − σ5
µνS

−1(k)
]

+t2q · Γ(k, p) + T 1
µνV

A
µν , (16)

q · tγ · Γ(k, p) = T 2
µν

[
S−1(p)σ5

µν − σ5
µνS

−1(k)
]

+γ · tq · Γ(k, p) + T 2
µνV

A
µν . (17)

These expressions only involve the vector vertex Γµ(k, p),
and do not contain explicit dependence on the fermion
mass m0. Information about the axial-vector vertex
ΓAµ (k, p) can be obtained through analogous procedure
involving the axial-vector TTI, Eq. (12). Although the
terms T 1

µνV
A
µν and T 2

µνV
A
µν are still equally unknown, they

are Lorentz scalar objects and can thus be conveniently

expressed as follows:

iT 1
µνV

A
µν = IDY1(k, p) + i(γ · q)Y2(k, p)

+i(γ · t)Y3(k, p) + [γ · q, γ · t]Y4(k, p) , (18)

iT 2
µνV

A
µν = iIDY5(k, p) + (γ · q)Y6(k, p)

+(γ · t)Y7(k, p) + i [γ · q, γ · t]Y8(k, p) , (19)

where Yi(k, p) are hitherto unconstrained scalar func-
tions, and ID is the identity matrix. Projections of
Eqs. (16,17) lead to a set of eight linearly independent,
coupled linear equations that fix the eight transverse
scalar functions τi in terms of the Y -functions defined
via Eqs. (18,19).

From Eqs. (7,8,16-19), it is possible to project out the
scalar form factors τi:

τ1(k, p) = − Y1

2(k2 − p2)∇(k, p)
, (20)

τ2(k, p) = − Y5 − 3Y3

4(k2 − p2)∇(k, p)
, (21)

τ3(k, p) =
1

2
b(k2, p2) +

2(k2 − p2)Y2 − t2(Y3 − Y5)

8(k2 − p2)∇(k, p)
, (22)

τ4(k, p) = − (k2 − p2)(6Y4 + Y A6 ) + t2Y S7
8(k2 − p2)∇(k, p)

, (23)

τ5(k, p) = −c(k2, p2)− 2Y4 + Y A6
2(k2 − p2)

, (24)

τ6(k, p) =
2q2Y2 − (k2 − p2)(Y3 − Y5)

8(k2 − p2)∇(k, p)
, (25)

τ7(k, p) =
q2(6Y4 + Y A6 ) + (k2 − p2)Y S7

4(k2 − p2)∇(k, p)
, (26)

τ8(k, p) = −b(k2, p2)− 2Y A8
k2 − p2

, (27)

where we have employed the obvious simplifying notation
Yi ≡ Yi(k, p). Moreover, we have introduced the Gram
determinant

∇(k, p) = k2p2 − (k · p)2 . (28)

In addition, the vertex transformation properties under
charge conjugation determine the symmetry properties
of the Y -functions:

Yi(k, p) = Yi(p, k) , i = 2, 6S , 7S , 8S , (29)

Yi(k, p) = −Yi(p, k) , i = 1, 3, 4, 5, 6A, 7A, 8A, (30)

where we conveniently introduce the decomposition

Yi(k, p) = Y Si (k, p) + Y Ai (k, p) , (31)

for i = 6, 7, 8, where the superscripts S and A stand
for the symmetric and antisymmetric parts of the corre-
sponding Yis, under k ↔ p. Note that in Eqs. (20-27),
there is no contribution of Y S6 , Y A7 and Y S8 . This is a
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consequence of the properties (10) and (11), which entail

Y S6 (k, p) = − (k2 − p2)Y1(k, p)

4∇(k, p)
, (32)

Y A7 (k, p) =
q2Y1(k, p)

4∇(k, p)
, (33)

Y S8 (k, p) = −q
2Y2(k, p) + (k2 − p2)Y3(k, p)

8∇(k, p)
. (34)

It is also worth noting that the trivial choice Yi(k, p) =
0 for all Y -functions completely fixes the transverse ver-
tex, defined through Eqs. (7,8,21,27), in terms of the
fermion wave function renormalization, as reported in
ref. [51]. However, we shall show that MR of the elec-
tron propagator implies that these Y -functions cannot all
be zero simultaneously.

We can invert relations (20-27) to write out the Y -
functions in terms of τi:

Y ′1(k, p) = −2∇(k, p)τ1(k, p) , (35)

Y ′2(k, p) =
1

2
(k2 − p2)

[
b(k2, p2)− 2τ3(k, p)

]
+ t2 τ6(k, p) , (36)

Y ′3(k, p) = −1

2
q2
[
b(k2, p2)− 2τ3(k, p)

]
+ 2∇(k, p)τ2(k, p)− (k2 − p2)τ6(k, p) , (37)

Y ′4(k, p) =
1

2

[
c(k2, p2) + τ5(k, p)

]
+

1

4

[
2(k2 − p2)τ4(k, p) + t2τ7(k, p)

]
, (38)

Y ′5(k, p) = −3

2
q2
[
b(k2, p2)− 2τ3(k, p)

]
+ 2∇(k, p)τ2(k, p)− 3(k2 − p2)τ6(k, p) , (39)

Y ′6
A

(k, p) = −3
[
c(k2, p2) + τ5(k, p)

]
− 1

2

[
2(k2 − p2)τ4(k, p) + t2τ7(k, p)

]
, (40)

Y ′7
S

(k, p) = −
[
2q2τ4(k, p) + (k2 − p2)τ7(k, p)

]
,

Y ′8
A

(k, p) = −1

2

[
b(k2, p2) + τ8(k, p)

]
. (41)

Here, we have conveniently defined:

Yi(k, p) = (k2 − p2)Y ′i (k, p) . (42)

We expect the study in terms of Yi(k, p) to be numeri-
cally amicable as the additional factor of (k2− p2) in the
numerator eases out any kinematical singularities in the
limit k2 → p2.

So far, we have shown that the TTIs relate the trans-
verse vertex form factors to the fermion propagator and
a non-local tensor vertex, but nevertheless this is not
enough to elucidate the analytical behavior of the Y -
functions. It is insightful to analyze the asymptotic be-
havior of the vertex. It has been shown that in the
asymptotic limit, defined as the perturbative expansion
with p2 � k2 � m2

0, the leading logarithmic term of the

transverse vertex reads (in our kinematical configuration)
as [78]:

ΓTµ (k, p)
p2>>k2

=
αξ

8πp2
log

(
k2

p2

)
T asyµ , (43)

where ξ is the gauge-fixing parameter, and

T asyµ ≡ T 3 asy
µ = T 6 asy

µ = p2γµ − pµγ · p . (44)

On the other hand, from Eqs. (7,8,20-27), it is straight-
forward to see that the leading structure of the trans-
verse vertex in the asymptotic limit acquires the follow-
ing form:

ΓTµ (k, p)
p2>>k2

= (τ3 + τ6)T asyµ

=
β

2p2
log

(
k2

p2

)
T asyµ

+

{
2k · q Y2 − k · t (Y3 − Y5)

4(k2 − p2)∇(k, p)

}
T asyµ , (45)

where we have used the fact that the one-loop expan-
sion of the wave function renormalization yields F (k2) =
1 + β log(k2/Λ2), where β is a constant of order O(α):
we shall show in the next section that β = αξ/(4π).
Hence, the leading logarithmic expansion for the asymp-
totic limit of the vertex, Eq. (43), demands

2k · q Y2(k, p) = k · t
(
Y3(k, p)− Y5(k, p)

)
, (46)

which must be fulfilled at least to second order of its per-
turbative expansion in powers of k2/p2, in order to ensure
the correct asymptotic limit of the transverse vertex.

Although the TTIs, and in particular the identities
(16) and (17), are potentially able to fix the transverse
vertex, the construction of an Ansatz for this vertex is
far from being complete since the Y -functions remain un-
known. Additional requirements need to be implemented
in order to compute them. In this spirit, we shall use the
argument of MR for the fermion propagator, in the chi-
rally symmetric limit, in order to derive an integral con-
straint for these Y -functions. We shall also restrict the
structure of the vertex by implementing symmetry argu-
ments and demanding a gauge independent breaking of
chiral symmetry. To this end, we introduce the SDE for
the fermion propagator in the next section.

IV. GAP EQUATION

The SDE for the fermion propagator, also known as the
fermion gap equation, is diagrammatically represented in
Fig. 2.

Mathematically, the gap equation is written as:

S−1(k) = S−1
0 (k) +

α

4π3

∫
E

d4p γνS(p)Γµ(k, p)∆µν(q) ,

(47)
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=
k k

− 1 − 1

q=k−p

S

k kp
S ΓνΓµS ΓνΓµ

∆µν

FIG. 2: Gap equation for the fermion propagator. The color-
filled blobs labelled with S, ∆µν and Γµ stand for the fully-
dressed fermion and photon propagators, and the three-point
vertex, respectively.

where the subscript E indicates that the integral is per-
formed in the Euclidean space, α = e2/4π is the electro-
magnetic coupling, and ∆µν(q) is the fully-dressed pho-
ton propagator. For an arbitrary gauge, it is defined as

∆µν(q) = ∆(q2)

[
δµν −

qµqν
q2

]
+ ξ

qµqν
q4

, (48)

where ∆(q2) is the photon propagator dressing function.
The subscript “0” in the first term of the right-hand side
of Eq. (47) denotes the tree level fermion propagator.

Recall from Eq. (5) that the fermion propagator is de-
fined by the wave function renormalization and the mass
function, so the gap equation, Eq. (47), can be decom-
posed into two coupled, integral equations forM and F ,
which, in an arbitrary gauge, are respectively written as:

M(k2)

F (k2)
= m0 +

αξ

4π3

∫
E

d4p

q4

F (p2)

p2 +M2(p2)

1

F (k2)

×
{
M(p2) q · k −M(k2) q · p

}
+

α

4π3

∫
E

d4p
F (p2)

p2 +M2(p2)
M(p2)GM(k, p) ,

(49)

1

F (k2)
= 1− αξ

4π3

∫
E

d4p

q4

F (p2)

p2 +M2(p2)

1

F (k2)

×
{
q · p+M(k2)M(p2)

q · k
k2

}
+

α

4π3

∫
E

d4p

k2

F (p2)

p2 +M2(p2)
u(k, p)GF (k, p) ,

(50)

where we have adopted the notation F (k2) ≡ F (k2,Λ2)
and conveniently defined

u(k, p) ≡ 3k · p− 2
∇(k, p)

q2
. (51)

The functions GF and GM in Eqs. (49,50) encode the ef-
fective contribution of the fully-dressed fermion-photon
vertex to the corresponding equations, and they are de-

fined as

(k2 − p2)

∆(q2)
GM(k, p) = Y5(k, p) +

ΛM (p, k)

M(p2)

+

{
3k2 − u(k, p) +

[
u(k, p)− 3p2

]M(k2)

M(p2)

}
1

F (k2)
, (52)

(k2 − p2)

∆(q2)
u(k, p)GF (k, p) =

−ΛNM (k, p)−M(p2)ΛM (k, p)

+(k2 − p2)
{
−3k2p2b(k2, p2) + u(k, p)b̃(k2, p2)

+M(p2)
(
u(k, p)− 3k2

)
c(k2, p2)

}
, (53)

where

b̃(k2, p2) =
1

k2 − p2

[
k2

F (k2)
− p2

F (p2)

]
. (54)

Moreover, we have defined massive (ΛM ) and non-
massive (ΛNM ) functions as

ΛM (k, p) =
1

2
Y1(k, p) + q · k Y A6 (k, p) + t · k Y S7 (k, p) ,

(55)

ΛNM (k, p) =
1

2
(k2 − p2)Y2(k, p) +

1

2
t2Y3(k, p)

−k · p Y5(k, p) + 4∇(k, p)Y A8 (k, p) . (56)

The reason for referring to ΛM and ΛNM as massive
and non-massive functions, respectively, is the following:
from Eqs. (49,52) it is straightforward to see that in the
chiral limit, where m0 = 0, a massless solution (M = 0)
is trivially achieved if ΛM has the mass function as a
global factor, i.e. ΛM ∼ M. On the other hand, the
function ΛNM does not follow this argument, and there-
fore it does not have a dependence on M as a global
factor. In the same spirit, we shall refer to Y1, Y A6 and
Y S7 as massive functions and Y2, Y3, Y5 and Y A8 as mass-
less functions.

Note that the contribution of Y4 in Eqs. (49,50) can-
cels out. This is an indication that the vertex cannot
be completely extracted solely from the fermion propa-
gator SDE. Nonetheless, Y4 can be modelled by relying
on additional information, e.g., the expected anomalous
electromagnetic moment for the corresponding fermion.

A. Quenched QED

The system of Eqs. (49,50) has long been studied using
different models for the photon propagator, see Ref. [101]
and references therein. For the sake of simplicity, we
limit this work to the well-known quenched approxima-
tion (qQED), where fermion loop contributions to the
photon SDE are neglected and the coupling does not run,
which in turn yields

∆(q2) ≡ ∆0(q2) = 1/q2 . (57)
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As we mentioned before, one of the goals of the present
article is to study the impact of the transverse vertex
on the DCSB and vice versa. In particular, we shall in-
vestigate the constraints imposed by demanding a gauge
independent DCSB in Section VII. For this purpose,
from now on, we focus our attention on the chiral limit
(m0 = 0) since this is the most insightful scenario to elu-
cidate how QED undergoes a phase transition from per-
turbative to non-perturbative dynamics as we increase
the electromagnetic coupling (α) up to the critical value
(αc) where DCSB is triggered. For α < αc the only pos-
sible solution to Eq. (49) in the chiral limit isM(k2) = 0,
but as α→ αc a second non-zero solution bifurcates away
from the trivial one. The theoretical prediction for the
critical coupling above which DCSB takes place can be
extracted from Eq. (49) through implementing bifurca-
tion analysis.

In the vicinity of the critical coupling α ∼ αc, the dy-
namically generated fermion mass is rather small in com-
parison with any other mass scale. Therefore, quadratic
and higher terms in the mass function can formally be ne-
glected. In this case, Eq. (50) for F and consequently its
solution, reduce to that of a massless theory. Thus, the
survey of the renormalization properties of the fermion
propagator in massless QED, and the corresponding im-
plications on the fermion-photon vertex, is mandatory.

In the next section we show that for a massless fermion
in quenched QED, the wave function renormalization
possesses a power law behavior, which is multiplicatively
renormalizable. We also derive a non-perturbative con-
straint on the non-massive Y -functions that ensures a
MR solution for F .

V. MR CONSTRAINTS

It is well-known that in QED the gap equation (47)
leads to a fermion propagator that is logarithmically
divergent. However, we can define renormalized prop-
agators by absorbing these divergences into the renor-
mailzation constants Zi. For massless QED, this multi-
plicative renormalization is accomplished by introducing

renormalized fields, fermion field ψR = Z−1/2
2 ψ, pho-

ton field ARµ = Z−1/2
3 Aµ, and also renormalized coupling

eR = Z2Z1/2
3 e/Z1. Thus, the MR of the fermion propa-

gator requires renormalized FR to be related to unrenor-
malized F through

FR(k2, µ2) = Z−1
2 (µ2,Λ2)F (k2,Λ2) , (58)

where µ plays the role of an arbitrary renormalization
scale. In order to solve Eq. (58), the functions involved
are expanded as perturbative series containing terms of
the form αn lnn (called leading logarithmic terms). This
is known as the leading log approximation (LLA). In the

LLA, we then have

F (k2,Λ2) = 1 +

∞∑
n=1

αnAn lnn
(
k2

Λ2

)
, (59)

Z−1
2 (µ2,Λ2) = 1 +

∞∑
n=1

αnBn lnn
(
µ2

Λ2

)
, (60)

FR(k2, µ2) = 1 +

∞∑
n=1

αnCn lnn
(
k2

µ2

)
, (61)

where An, Bn and Cn are unknown coefficients but can
be calculated in perturbation theory to any desired order.
However, MR condition (58) restricts the coefficients to
be interrelated as follows:

An = Cn = (−1)nBn =
An1
n!

, (62)

so that the functions F , FR and Z2 obey a power law
behavior. Then, the infinite order solution of (59) for F
can be summed up as follows:

F (k2,Λ2) =

(
k2

Λ2

)β
, (63)

where we define β = αA1. This is the LLA. Beyond it, β
would have terms of O(α2). Naturally, PT allows us to
evaluate the anomalous dimension β at different orders
of approximation.

The one-loop contribution to the fermion propagator
can be evaluated by taking the tree level expressions
for S(p), Γµ(k, p) and ∆µν(q) on the right-hand side of
Eq. (47). In the massless limit,M = 0, and the resulting
expression for F is

1

F (k2,Λ2)
= 1 +

αξ

4π3

∫
E

d4p

p2

[
p2 − k · p

]
q4

− α

4π3

∫
E

d4p

p2

[
2∇(k, p)− 3q2(k · p)

]
k2q4

. (64)

Angular integration of Eq. (64) leads to

1

F (k2,Λ2)
= 1 +

αξ

4π

∫ Λ2

k2

dp2

p2
. (65)

Carrying out radial integration in Eq. (65) yields

F (k2,Λ2) = 1 +
αξ

4π
log

(
k2

Λ2

)
. (66)

Comparing expression (66) with the perturbative expan-
sion (59) to one-loop order, we see that A1 = ξ/4π.
Therefore, PT fixes the O(α) anomalous dimension in
Eq. (63) to be

β =
αξ

4π
. (67)
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The power law behavior of F in Eq. (63), with β given
in Eq. (67), is the solution of

1

F (k2,Λ2)
= 1 +

αξ

4π

∫ Λ2

k2

dp2

p2

F (p2,Λ2)

F (k2,Λ2)
. (68)

Note that Eq. (68) is non-perturbative in nature and
serves as a requirement of MR for the wave function
renormalization F : any Ansatz for the three-point vertex
must guarantee that the wave function renormalization
F in Eq. (47) satisfies Eq. (68). We shall now proceed to
show how the requirement of MR for the fermion prop-
agator, embodied in Eq. (68), constrains the massless
Y -functions.

In the massless limit, Eq. (50) reduces to

1

F (k2)
= 1 +

αξ

4π3

∫
E

d4p

p2

F (p2)

F (k2)

[
p2 − k · p

]
q4

− α

4π3

1

k2

∫
E

d4p

p2

F (p2)∆(q2)

k2 − p2

{
ΛNM (k, p) +

(k2 − p2)
[
3k2p2b(k2, p2)− b̃(k2, p2)u(k, p)

]}
. (69)

Angular integration of the last term on the right-hand
side of the above Eq. (69) vanishes in qQED, since∫ π

0

dϕ sin2 ϕ
u(k, p)

q2
= 0 , (70)

where ϕ is the angle between k and p. Bearing in mind
the latter result, Eq. (70), it is straightforward to see
from Eq. (69) that if we set, quite generally,

ΛNM (k, p) = (p2 − k2)

×
[
T (k2, p2)u(k, p) + 3k2p2b(k2, p2)

]
, (71)

T being an a priori arbitrary, dimensionless function of
k2 and p2 alone, then Eq. (68) is trivially fulfilled in
qQED, i.e., a multiplicatively renormalizable solution for
F (k2) is ensured.

Symmetry properties of the Y -functions, Eqs. (29,30),
restrict T (k2, p2) in Eq. (71) to be fully symmetric under
k2 ↔ p2. Furthermore, in order to ensure that in PT the
transverse form factors start at O(α), the perturbative
expansion for T is required to begin at the same order.

The above expression for ΛNM (k, p), Eq. (71), provides
a non-perturbative Ansatz for the corresponding linear
combination of the massless Y -functions, see Eq. (56).
Although Eq. (71) does not fix the Y -functions individ-
ually, we shall show in Section VII that it suffices (along
with additional constraints on the remaining, relevant
Y -functions) to investigate DCSB in the fermion prop-
agator. Moreover, in Eq. (71), we assume that the q2-
dependence of the Y -functions involved is effectively in-
corporated by means of the function u(k, p). However,
more realistic Ansätze are expected to possess a more
complex q2-dependence.

For an arbitrary q2-dependence of ΛNM (k, p), it seems
impossible to proceed any further in integrating Eq. (69)
because of the unknown dependence of the Y -functions
on the angle ϕ. To circumvent this problem, we shall
work with “effective” functions, denoted as Yi(k

2, p2),
whose relation with the “real” ones, Yi(k, p), is defined
exactly in analogy with [83, 104] as follows:

Y2(k2, p2) =
1

f2(k2, p2)

∫ π

0

dϕ sin2 ϕ
Y2(k, p)

q2
, (72)

Y3(k2, p2) =
1

f3(k2, p2)

∫ π

0

dϕ sin2 ϕ
t2 Y3(k, p)

q2
, (73)

Y5(k2, p2) =
1

f5(k2, p2)

∫ π

0

dϕ sin2 ϕ
(k · p)Y5(k, p)

q2
, (74)

Y A8 (k2, p2) =
1

f8(k2, p2)

∫ π

0

dϕ sin2 ϕ
∇(k, p)Y A8 (k, p)

q2
,

(75)

where we have defined

f2(k2, p2) =

∫ π

0

dϕ sin2 ϕ
1

q2

=
π

2

[
1

p2
θ(p2 − k2) +

1

k2
θ(k2 − p2)

]
, (76)

f3(k2, p2) =

∫ π

0

dϕ sin2 ϕ
t2

q2

=
π

2

[(
1 + 2

k2

p2

)
θ(p2 − k2)

+

(
1 + 2

p2

k2

)
θ(k2 − p2)

]
, (77)

f5(k2, p2) =

∫ π

0

dϕ sin2 ϕ
(k · p)
q2

=
π

4

[
k2

p2
θ(p2 − k2) +

p2

k2
θ(k2 − p2)

]
, (78)

f8(k2, p2) =

∫ π

0

dϕ sin2 ϕ
∇(k, p)

q2

= −π
8

[
k2

p2

(
k2 − 3p2

)
θ(p2 − k2)

+
p2

k2

(
p2 − 3k2

)
θ(k2 − p2)

]
, (79)

where θ is the usual step function:

θ(x− y) =

{
1 for x ≥ y ,
0 for x < y .

(80)

Using aforementioned effective functions, angular inte-
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gration of Eq. (69) in qQED leads to

1

F (k2)
= 1 +

αξ

4π

∫ Λ2

k2

dp2

p2

F (p2)

F (k2)

− α

4π

∫ k2

0

dp2

k2
F (p2)

{
3p2b(k2, p2)

+
1

2k2
Y2(k2, p2) +

1

2

Y3(k2, p2)

k2 − p2

(
1 + 2

p2

k2

)
− p2

2k2

Y5(k2, p2)

k2 − p2
− p2Y

A
8 (k2, p2)

k2 − p2

(
p2

k2
− 3

)}
− α

4π

∫ Λ2

k2

dp2

k2
F (p2)

{
3k2b(k2, p2)

+
1

2p2
Y2(k2, p2) +

1

2

Y3(k2, p2)

k2 − p2

(
1 + 2

k2

p2

)
− k2

2p2

Y5(k2, p2)

k2 − p2
− k2Y

A
8 (k2, p2)

k2 − p2

(
k2

p2
− 3

)}
.

(81)

In order to ensure MR of the fermion propagator, we
demand F (k2) on the left-hand side of Eq. (81) to satisfy
Eq. (68); this imposes the following restriction:∫ k2

0

dp2

k2
F (p2)

{
3p2b(k2, p2)

+
1

2k2
Y2(k2, p2) +

1

2

Y3(k2, p2)

k2 − p2

(
1 + 2

p2

k2

)
− p2

2k2

Y5(k2, p2)

k2 − p2
− p2Y

A
8 (k2, p2)

k2 − p2

(
p2

k2
− 3

)}
+

∫ Λ2

k2

dp2

k2
F (p2)

{
3k2b(k2, p2)

+
1

2p2
Y2(k2, p2) +

1

2

Y3(k2, p2)

k2 − p2

(
1 + 2

k2

p2

)
− k2

2p2

Y5(k2, p2)

k2 − p2
− k2Y

A
8 (k2, p2)

k2 − p2

(
k2

p2
− 3

)}
= 0 .

(82)

This requirement encodes the fact that all divergences
have already been absorbed in the MR solution for the
wave function renormalization F . As a consequence,
there is no necessity of regularizing Eq. (82) and we can
take Λ2 →∞ in the integration limit. It is convenient to
introduce a dimensionless variable x, defined as

x =
p2

k2
∀ p2 ∈

[
0, k2

]
, (83)

x =
k2

p2
∀ p2 ∈

[
k2,∞

]
, (84)

so that Eq. (82) is now expressed as∫ 1

0

dxW (x) = 0 , (85)

with

W (x) = 6
r(x)

x− 1
+
(
xβ + x−2

) [
h1(x) + h2(x)

]
, (86)

where we have defined the function

r(x) = x
(
1− xβ

)
− x−1

(
1− x−β

)
. (87)

The presence of the anomalous dimension β as an expo-
nent in Eqs. (86,87), is related to the terms F (k2)/F (p2)
in (82), which can be expressed as (k2/p2)β in the light
of Eq. (63). Furthermore, in Eq. (86), we have defined

h1(x) =
F (k2)

x− 1

1

k2
H1(k2, xk2) , (88)

h2(x) =
F (k2)

x− 1

x

k2
H2(k2, xk2) . (89)

These are dimensionless functions, satisfying the proper-
ties

h1(x−1) = xβ−1h1(x) , (90)

h2(x−1) = xβ−2h2(x) . (91)

Moreover, in Eqs. (88,89), we have conveniently defined
scalar functions

H1(k2, p2) =

(
p2

k2
− 1

)
Y2(k2, p2)−

(
p2

k2
+ 1

)
Y3(k2, p2)

−8p2Y A8 (k2, p2) , (92)

H2(k2, p2) = −Y3(k2, p2) + Y5(k2, p2)

+2(k2 + p2)Y A8 (k2, p2) . (93)

Employing x = p2/k2 in Eq. (86), and using definitions
(88,89,92,93), we have

W

(
p2

k2

)
=

S(k2, p2)

p2 − k2

{(
1− k2

p2

)
Y2(k2, p2)

−
(

2 +
k2

p2

)
Y3(k2, p2) + Y5(k2, p2)

+2(p2 − 3k2)Y A8 (k2, p2)

}
+ 6k2 r

(
p2/k2

)
p2 − k2

, (94)

where we have defined

S(k2, p2) = F (k2)
k2

p2
+ F (p2)

p2

k2
, (95)

which enters the definition of r(p2/k2) through

r

(
p2

k2

)
= S(k2, p2)

[
1

F (p2)
− 1

F (k2)

]
. (96)

Eqs. (85-96) constitute non-perturbative constraints on
the fermion-photon vertex: for every Ansatz for the Y -
functions, the resulting function W is restricted to guar-
antee the integral constraint (85), so that the MR of the
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fermion propagator is ensured. To bring out the applica-
bility and scope of the integral constraint on the mass-
less Y -functions, Eq. (85), we now proceed to analyze an
existing, rather general transverse vertex Ansatz, which
was constructed in qQED to implement the requirement
of MR for massless fermion propagator in addition to all
other key features of QED mentioned before, [25]. Dif-
ferent choices of the free parameters defining this Ansatz
correspond to numerous vertices constructed in the past.
We will make reference to all these constructions along
the way.

VI. EXAMPLES

The Bashir-Bermudez-Chang-Roberts (BBCR) vertex,
ref. [12], is an Ansatz for the dressed fermion-photon ver-
tex in QED, whose construction is constrained primarily
by two requirements: to provide MR of the fermion prop-
agator and to produce gauge independent critical cou-
pling for DCSB. As it involves projecting the vertex onto
the gap equation, it is natural that it is expressed only in
terms of the functions which appear in the full fermion
propagator, namely F (k2) and M(k2). Moreover, its
simplicity lies in the fact that its functional dependence
on these entities is solely through the forms which enter
the longitudinal vertex, namely, b(k2, p2) and c(k2, p2).
In our kinematical configuration and notation, the trans-
verse form factors for the BBCR vertex read as

τ1(k2, p2) =
a1

(k2 + p2)
c(k2, p2) , (97)

τ2(k2, p2) =
a2

(k2 + p2)
b(k2, p2) , (98)

τ3(k2, p2) = a3 b(k
2, p2) , (99)

τ4(k2, p2) =
a4(k2 − p2)

4k2p2
c(k2, p2) , (100)

τ5(k2, p2) = −a5 c(k
2, p2) , (101)

τ6(k2, p2) = −a6(k2 + p2)

(k2 − p2)
b(k2, p2) , (102)

τ7(k2, p2) = −
[
a4q

2

2k2p2
+

a7

k2 + p2

]
c(k2, p2) , (103)

τ8(k2, p2) = a8 b(k
2, p2) , (104)

where the coefficients ai are constants. We will consider
this example in detail because different choices of ai cor-
respond to several vertices proposed in the literature,
see Ref. [73], e.g., the Ball-Chiu vertex, [43], the Curtis-
Pennington vertex [77] and the Qin-Chang vertex [51].

From Eqs. (35-41,97-104), we see that the correspond-

ing Y -functions for the BBCR vertex read as

Y ′1(k, p) = −2a1 c(k
2, p2)

∇(k, p)

k2 + p2
, (105)

Y ′2(k, p) = −b(k2, p2)×[
(k2 − p2)

(
a3 −

1

2

)
+ a6

(
k2 + p2

k2 − p2

)
t2
]
, (106)

Y ′3(k, p) = b(k2, p2)×[
q2

(
a3 −

1

2

)
+ 2a2

∇(k, p)

k2 + p2
+ a6(k2 + p2)

]
, (107)

Y ′4(k, p) = −1

2
c(k2, p2)×[

a4
∇(k, p)

k2p2
+ (a5 − 1) +

a7

2

t2

k2 + p2

]
, (108)

Y ′5(k, p) = 3b(k2, p2)×[
q2

(
a3 −

1

2

)
+

2

3
a2
∇(k, p)

k2 + p2
+ a6(k2 + p2)

]
, (109)

Y ′6
A

(k, p) = c(k2, p2)×[
a4
∇(k, p)

k2p2
+ 3(a5 − 1) +

a7

2

t2

k2 + p2

]
, (110)

Y ′7
S

(k, p) = a7 c(k
2, p2)

k2 − p2

k2 + p2
, (111)

Y ′8
A

(k, p) = −1

2
b(k2, p2)(a8 + 1) . (112)

It is mathematically straightforward to show that the
asymptotic expansion of Eqs. (106,107,109) in powers of
k2/p2, for p2 >> k2 >> m2

0, fulfills the PT requirement
(46) up to second order if [12]

a3 + a6 =
1

2
. (113)

In order to verify that if, for the massless case, the
BBCR vertex satisfies the integral constraint for W ,
Eq. (85), it is necessary to compute the corresponding
massless effective Y -functions by means of Eqs. (72-75),
which in turn yield

Y2(k2, p2) = b(k2, p2) ×{
(1/2− a3)(k2 − p2)2 − a6(k2 + p2)(k2 + 2p2)

}
,(114)

Y3(k2, p2) =
1

2

k4 − p4

k2 + 2p2
b(k2, p2)×{

(2a3 + 2a6 − 1)k2 − (a2 − 4a6)p2

+a2p
2
(
(4k4 + 6k2p2 − p4)/((k2 + p2)2)

)}
, (115)

Y5(k2, p2) =
k2 − p2

k2 + p2
b(k2, p2)×{

3a6(k2 + p2)2 + a2p
2(k2 − p2/2)

}
, (116)

Y A8 (k2, p2) = −1

2
(a8 + 1)(k2 − p2) b(k2, p2) . (117)

Using Eqs. (114-117) in the expression for W (p2/k2),
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Eq. (94), we find

W (x) = −2(a2 + 2a3 − 2a8)
r(x)

1− x

+
1

2

[
− 3(1− 2a6) + (a2 + 2a3 − 2a8)

](1 + x

1− x

)
r(x) .

(118)

If we insert the above expression for W (x), Eq. (118), in
its corresponding integral restriction, Eq. (85), we find
that the integral vanishes if and only if the following two
conditions are met:

a2 + 2a3 − 2a8 = 0 , (119)

a6 = 1/2 , (120)

which are the constraints reported in [12] for the coeffi-
cients ai in order to ensure the MR of the fermion prop-
agator.

As a counterexample, we could take all Y -functions
equal to zero. If we do so, the resulting function W (x)
reads as

W (x) = −6
r(x)

1− x
, (121)

which does not satisfy the integral constraint (85).
Therefore, setting all Y -functions equal to zero does not
ensure the MR of the fermion propagator.

Throughout Sections V and VI, we have investi-
gated MR solution for massless fermion propagator in
qQED, within the LLA, and derived a consequent non-
perturbative, integral constraint for the massless Y -
functions. In the next section, we study DCSB and im-
plement the argument of a gauge independent critical
coupling to impose further constraints on the transverse
vertex.

VII. GAUGE INDEPENDENT DCSB

In order to study DCSB through the gap equation by
employing fully-dressed fermion-photon vertex, Eqs. (2-
4,7,8,20-27), we propose an Ansatz for the functions Yi
appearing in Eqs. (49-56). Naturally, we look for the
simplest construction which incorporates all the key con-
straints we have enlisted and studied so far. This can be
achieved by requiring the following :

• 1) The massive Y -functions in the gap equation are
expressed solely in terms of the fermion dressing
functions, F and M.

• 2) The antisymmetric contribution of GM(k, p)
and GF (k, p) vanishes under k ↔ p.

• 3) The functions GM and GF are the same (up to
a constant factor).

These simplifying requirements do not jeopardize the MR
of the fermion propagator which can still be ensured in
massless qQED.

Assumptions 1) and 2) are fulfilled if we choose

Y1(k, p) = −4
∇(k, p)(k2 − p2))

q2
c(k2, p2) , (122)

Y A6 (k, p) = −3(k2 − p2) c(k2, p2) , (123)

Y S7 (k, p) = 0 . (124)

Moreover, we can implement the simplifying require-
ment 3) by demanding the MR condition on the massless
functions, Eq. (71), and fixing Y5 as follows:

Y5(k, p) = (k2 − p2)
[
3T (k2, p2) + u(k, p)b(k2, p2)

]
. (125)

In fact, the Ansatz for the Y -functions, constituted
through Eqs. (71,122-125), yields

1

3
GM(k, p) = GF (k, p) = ∆(q2)

[
T (k2, p2) + b̃(k2, p2)

]
≡G(k, p) , (126)

which fulfills assumption 2) in addition to 3). Moreover,
for the massless limit in qQED, it simplifies Eq. (50) as

1

F (k2)
= 1− αξ

4π3

∫
E

d4p

p2

F (p2)

F (k2)

q · p
q4

. (127)

After angular integration, F satisfies Eq. (68) as ex-
pected, i.e., it has the power law behavior of Eq. (63)
as constrained by MR, with the anomalous dimension β
given in Eq. (67).

Let us summarize below the important characteristics
of the function T :

• i) It must be a dimensionless function of k2 and
p2. We assume it to be q2-independent in order to
ensure the MR of F (k2).

• ii) It must be fully symmetric under k2 ↔ p2.

• iii) Its perturbative expansion must start at O(α).

• iv) It must vanish in the Landau gauge, ξ = 0.

Recall from Section V that condition i) is required to
ensure a MR solution for the massless fermion propa-
gator in qQED, while the conditions ii) and iii) follow
from the symmetry properties of the vertex and its per-
turbative expansion, respectively. The additional condi-
tion iv) is imposed in order to facilitate the extraction
of an ξ-independent critical coupling, and an anomalous
dimension for the mass function which, at criticality, is
independent of the choice of the vertex, as we shall dis-
cuss now.

In the vicinity of the critical coupling, αc, above which
chiral symmetry is broken dynamically, the generated
fermion mass is negligible in comparison with any other
mass scale. Hence, for α ∼ αc, we can formally neglect
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quadratic and higher powers (if any) of the mass function
in Eq. (49). In the limit m0 = 0, it reduces to

M(k2)

F (k2)
=

αξ

4π3

∫
E

d4p

p2

F (p2)

F (k2)

1

q4

×
{
M(p2) q · k −M(k2) q · p

}
+

3α

4π3

∫
E

d4p

p2
F (p2)M(p2)G(k, p) , (128)

where our Ansatz for the Y -functions, Eqs. (71,122-
125), has been implicitly embedded through the function
G(k, p), defined in Eq. (126). Moreover, neglecting terms
quadratic inM, the equation for F , Eq. (50), reduces to
that of a massless theory and decouples from that of the
mass function M. In the quenched approximation, it
yields Eq. (127). Therefore, from Eqs. (127,128) we see
that in the vicinity of the critical coupling, in qQED, the
mass function satisfies the following equation:

M(k2) =
αξ

4π3

∫
E

d4p

p2

F (p2)

F (k2)
M(p2)

q · k
q4

+
3α

4π3

∫
E

d4p

p2
F (p2)M(p2)G(k, p) . (129)

In the neighborhood of αc, MR forces a power law behav-
ior for the mass function which must hold at all momenta:

M(k2) = BΛ

(
k2
)−s

, (130)

where BΛ is a constant (that depends on Λ), and the
exponent s = 1− γm/2 is defined in terms of the anoma-
lous dimension of the mass function, γm. We assume
0 < s ≤ 1 to comply with perturbation theory.

Bardeen et al. demonstrated that, at α = αc, the mass
anomalous dimension is γm = 1 [105, 106]. Some fur-
ther analyses, based on Cornwall-Jackiw-Tomboulis ef-
fective potential technique, tend to argue that, at crit-
icality, this value holds true regardless of the choice of
the vertex [107–109]. In Ref. [81], this values is quite
close to unity, though not exactly equal to it. Setting
γm = 1 results in the four-fermion interaction operator
(ψψ)2 acquiring dynamical dimension d = 2(3− γm) = 4
in contrast to its canonical dimension d = 6. Therefore,
four-fermion interaction becomes marginal. It must then
be included in order to render non-perturbative QED a
self-consistent, closed theory [107, 110]. Depending upon
the non-perturbative details of the fermion-photon inter-
action, it is plausible to have γm > 1, implying d < 4,
which would modify the status of the four-point operators
from marginal to relevant; see, e.g., the review article [24]
and references therein.

At α = αc, the anomalous dimension γm = 1 and its
corresponding critical value sc = 1/2 can be obtained by
constraining the fermion-photon vertex, a line of action
which is followed in [82, 107]. In our analysis, this critical
value is readily derived from Eq. (128) in Landau gauge,
ξ = 0, if we demand T (k2, p2) to fulfill condition iv):

from Eq. (127) we see that in the Landau gauge F (k2) =
1, and therefore Eq. (129) reduces to

M(k2) =
3α

4π3

∫
E

d4p

p2

M(p2)

q2
. (131)

For the MR solution of the mass function, Eq. (130), the
above Eq. (131) results in

s =
1

2
± 1

2

√
1− α

αc
, (132)

where αc stands for the critical coupling, which signals
the point where the two possible solution for smatch each
other, and a non-trivial solution for the mass function1

bifurcates away from the perturbative one (M = 0): for
α > αc, the solution for the mass function enters the
complex plane indicating that DCSB has taken place. In
this case, the critical coupling is:

αc =
π

3
, (133)

thus revealing a Miransky scaling law for the interaction
strength α [112–114], which has been derived using a bare
vertex [115, 116]. For α = αc = π/3 in Eq. (132), the
expected critical value for the anomalous mass dimension
is obtained, i.e.

sc =
1

2
. (134)

Since the critical coupling pinpoints a phase transi-
tion from perturbative to non-perturbative dynamics, it
is potentially a physical observable, and hence it is ex-
pected to be independent of the gauge parameter. Thus,
Eq. (131), and its corresponding MR solution, Eq. (130),
must hold in all gauges. Therefore, from Eqs. (129,131),
we see that in order for αc and sc to be ξ-independent,
the mass function and the vertex must satisfy the follow-
ing equation in qQED:∫

E

d4p

p2

M(p2)F (p2)

q2
×{

ξq · k
3q2F (k2)

+ T (k2, p2) + k2b(k2, p2)

}
= 0 . (135)

After performing angular integration, and introducing
the dimensionless variables defined in Eqs. (83,84), the
above Eq. (135) can be cast in the following form:∫ 1

0

dx√
x
V (x) = 0 , (136)

1 In addition to positive-definite solutions for the mass function
(and their corresponding mirror), an arbitrary vertex may pro-
duce spurious oscillatory solutions for M. However, it has been
argued that a realistic vertex might only produce monotonically
decreasing and increasing non-trivial solutions [111].
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with

V (x) =
ξ

3
xβ−s+

1/2 +
[
xβ−s+

1/2 + xs−
1/2
]
g(x)

+

(
xβ − 1

1− x

)
x−s+

1/2 −
(
x−β − 1

1− x

)
xs+

1/2 , (137)

where s and β, defined in Eqs. (67,134), appear in the
light of the MR solutions for F and M, Eqs. (63,130),
respectively. Furthermore, in Eq. (137) we have defined

g(x) = F (k2)T (k2, xk2) , (138)

which is independent of k2, and satisfies the following
property:

g(x−1) = xβg(x) . (139)

It is important to stress the fact that Eq. (136) stands
for a non-perturbative constraint on the vertex: any
Ansatz for T (k2, p2) must provide a function V that
should satisfy Eq. (136). Conversely, from a particular
solution for V in the latter equation, one can derive the
corresponding function T by means of Eq. (137). How-
ever, there exist an infinite number of solutions for V (x)
satisfying Eq. (136). In addition, such a solution for V
must also satisfy (cf. Eq. (137))

V (x)− V (x−1) =
ξ

3

(
xβ−s+

1/2 − x−β+s−1/2
)
. (140)

A simple choice satisfying Eqs. (136,140) at criticality
reads:

V (x) =
ξ

3

{
xβ +

1− 2β

8β2

(
2− xβ − x−β

)}
, (141)

valid for −1/2 ≤ β ≤ 1/2 but β 6= 0. In the Landau gauge,
Eqs. (136,140) are satisfied with the trivial solution

V (x)ξ=0 = 0 . (142)

It is worth reminding that Eq. (136), and consequently
Eqs. (137,140), are rigourously valid only at criticality.
Therefore, for αc = π/3 and sc = 1/2, the resulting
function T (k2, p2), derived form Eqs. (137,141), reads
(for x = p2/k2 and −6 ≤ ξ ≤ 6, but ξ 6= 0) as

T (k2, p2) = −1

2

(
k2 + p2

)
b
(
k2, p2

)
+

(12− ξ)
2ξ

[
F (k2)− F (p2)

F (k2) + F (p2)

] [
1

F (k2)
− 1

F (p2)

]
,

(143)

whereas Eqs. (137,142) yield (for Landau gauge)

T (k2, p2)ξ=0 = −1

2

(
k2 + p2

)
b
(
k2, p2

)
. (144)

The above expressions for T fulfill conditions i)-iv),
as expected, but a few observations must be made:

a) MR of the wave function renormalization entails
F (p2,Λ2)/F (k2,Λ2) = F (p2,µ2)/F (k2,µ2) for some renormaliza-
tion scale, µ2, ensuring the Λ2-independence of the sec-
ond term on the RHS of Eq. (143); and b) although
F = 1 for ξ = 0 (in the LLA of qQED), leading to
Tξ=0 = 0, the function Tξ=0(k2, p2) defined in Eq. (144)
does not necessarily vanish in the Landau gauge beyond
the LLA and the quenched approximation.

0.5 1 1.5 2 2.5
α

10-10

10-8

10-6

10-4

10-2

100

m
E/Λ

α
c=π

/3

ξ=1

ξ=0

ξ=−1

ξ=−2

ξ=−3

fit ξ=1
fit ξ=0
fit ξ=−1
fit ξ=−2
fit ξ=−3

FIG. 3: Ratio of the Euclidean mass and the ultraviolet cut-off
in different gauges. αc = π/3 within the numerical accuracy
of our computation.

Numerical evaluation of the ratio between the eu-
clidean mass mE , defined as mE = M(m2

E), and the
ultraviolet cut-off Λ is shown in Fig. 3 for different gauges
implementing the Ansätze introduced in Eqs. (143,144).
In the plot, points with α < 1.25 (highlighted as filled
markers) are fitted to the Miransky scaling law [112–116]

mE

Λ
= exp

− πκ√
α
αc
− 1

+ φ

 . (145)

ξ αc = π/3 κ φ

1 0.69% 0.695 0.481
0 0.82% 0.970 1.383
−1 0.51% 1.112 1.604
−2 0.51% 1.199 1.679
−3 2.81% 1.283 1.829

TABLE I: Parameters for different gauges

Each fit yields the critical coupling αc = π/3 with
a numerical error of less than 1% for ξ = 1, 0,−1,−2
(and ∼ 2.8% for ξ = −3) as indicated in the second
column of the Table I. It is worth reminding that our
Ansatz reveals αc = π/3, just like the bare vertex in
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the Landau gauge. However, the bare vertex leads to a
highly gauge dependent αc, including no chiral symmetry
breaking for ξ = −3. In our case, chiral symmetry is
broken in every gauge with the same critical coupling.
The result for ξ = −3 particularly emphasizes this point.

It is well-known that DCSB manifests itself in the
three-point vertex through its massive form factors [117,
118], and thus a physically meaningful Ansatz for
T (k2, p2) should incorporate the mass function. In the
present work, we propose a simple, numerically tractable
Ansatz for ξ = 0,

T (k2, p2)ξ=0 = −1

2

(
k2 + p2

)
b
(
k2, p2

)
+ρ

[
M(k2)

F (k2)
+
M(p2)

F (p2)

]
c
(
k2, p2

)
, (146)

which is an extension of Eq. (144), with a mass term
weighted by a real constant ρ. The fact that the last term
of Eq. (146) contains quadratic powers inM ensures that
this contribution can be neglected at criticality, which
in turn yields a gauge independent critical coupling. In
addition, characteristics i)-iv) remain preserved.

1 1.2 1.4 1.6 1.8 2
α

10-10

10-8

10-6

10-4

10-2

m
E/
Λ

ρ=0,   κ=0.970, φ=1.383
ρ=5,   κ=0.957, φ=0.914
ρ=10, κ=0.958, φ=0.723

α
c=
π/

3

FIG. 4: Euclidean mass in Landau gauge for ρ = 0, 5, 10. ρ
stands for the strength of the DCSB in the vertex, Eq. (146)

.

Numerical evaluation of mE/Λ using Eq. (146) is
shown in Fig. 4 for different values of ρ. Again, points
with α < 1.25 are fitted to Eq. (145), indicating a crit-
ical coupling independent of the ρ parameter and equal
to π/3, within a margin of error smaller than 1%.

Numerical results for the Euclidean mass plotted in
Figs. 3 and 4 support the argument that any function
T (k2, p2) preserving characteristics i)-iv) and satisfying
conditions defined through Eqs. (136,140) will ensure a
gauge independent critical coupling αc = π/3 in qQED.
Eqs. (143,144) define simple, numerically friendly

Ansätze for the transverse vertex contribution T to the
gap equation. In Landau gauge, an extension of the
Ansatz defined through Eq. (146) explicitly incorporates
DCSB and still ensures a critical coupling independent
of the ρ parameter.

VIII. CONCLUSIONS

In this article, we have investigated combined con-
straints of TTI, LKFT, MR of the massless fermion
propagator, gauge-independence of the critical coupling
αc in quenched QED and one-loop perturbation theory
in the asymptotic limit to construct a general fermion-
photon vertex. We work explicitly with Yi functions,
which arise naturally on the implementation of the TTI,
providing, along the way, their symmetry properties
under the charge conjugation operation. Through an
exact relation, we define effective Yi for which the angu-
lar dependence on the variable q2 has been integrated
out to make their implementation in the gap equation
more efficient. As a simplifying consequence of working
with Yi, we observe that the kernel dependence on
the Gram determinant ∇(k, p) for the mass function
disappears altogether. Moreover, our study reveals that
we cannot force all Yi to be simultaneously equal to
zero. It will violate the LKFT transformation law and
the MR of the massless fermion propagator. We work
with quite a general vertex construction [12], formulated
in terms of Yi. We also provide simple examples of this
fermion-photon vertex and carry out its numerical study
to compute the mass function and its variation as a
function of the coupling strength. The results clearly
follow Miransky scaling law and provide αc = π/3.
Moreover, anomalous mass dimension γm = 1, as has
been advocated in several previous works [82, 107–109].
Also, this critical coupling is gauge independent. As
mentioned before, fermion-photon vertex enters the
SDE study of several hadronic obseravbles, such as
form factor calculations, where photons interact with
quarks. Therefore, an improved understanding of this
vertex, such as the one detailed in this article, is very
important. Moreover, a natural extension of our work
for the quark-gluon vertex in QCD is currently underway.
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