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By allowing gauge anomaly cancellation between fermions in different families we find a non-
universal solution for a Z′ family of models with the same content of fermions of the standard
model plus three right-handed neutrinos. We also impose constraints from the Yukawa interaction
terms in such a way that at the end we obtain a solution with six free parameters. Our solution
contains as particular cases well-known models in the literature. As an application, we report a
model that evades LHC constraints, flavor changing neutral currents and low energy constraints.
Simultaneously, the model is able to explain the flavor anomalies in the Wilson coefficients C9(µ)
and C10(µ) without modifying the corresponding Wilson coefficients for the first family. In our
approach, this procedure is always possible for Z′ masses smaller than ∼ 2.5 TeV.

PACS numbers: 12.38.-t 11.10.St 11.15.Tk, 14.40.Pq 13.20.Gd 14.40.Df

I. INTRODUCTION

In recent years, experimental anomalies in the LHCb and in low-energy experiments [1–4] have generated some
theoretical speculation about the posibility that these results constitute a manifestation of physics beyond the standard
model (SM). A number of anomalies in semileptonic B decays have been reported by the LHCb collaboration and
other experiments [2, 5–10], finding various deviations from their predicted values in the SM. Even though the
experimental results are not conclusive yet, the global fits improve for models where the new physics contributions to
the Wilson coefficient Cµ9 decrease it by a quarter of the SM prediction [11]. Because the only lepton in the associated
Wilson operator is the muon field, one of the preferred theoretical frameworks to explain these anomalies are the non-
universal models [12–20], for which the electroweak (EW) parameters and quantum numbers are family dependent.
In general, non-universal models are restricted severely by flavor changing neutral currents (FCNC); however, as it
is well-known [21], we can get rid of these problems by guaranteeing that the gauge couplings of the new physics to
the left-handed down-type quarks become identical (We do not know anything about the mixing of the right-handed
quarks so that we can assume a diagonal matrix. That result quite useful to avoid further constraints on the Z ′

charges). That is particularly important for the first and second generation.
The best-known non-universal EW extensions of the SM correspond to the so-called 331 models; however, simpler

solutions can be built by restricting the additional EW sector to an abelian U(1) gauge symmetry with the same
fermion content of the SM plus right-handed neutrinos. As we will show, these minimal solutions are able to explain
these anomalies without increasing the number of new fields and parameters. These EW extensions are known as
minimal models [22–33], and constitute the simplest EW extension of the SM. The best-known example is the left-
right symmetric (LRS) model, which has universal EW charges for the three families and its content of fermions
excess the SM one by a right-handed neutrino in every family. Earlier in the nineties, several works pointed out the
non-fundamental character of the universality of the EW charges [34–45]. This was motivated by EW models based
on string theory which, in most of the cases, result to be non-universal [26]. A general solution to the gauge anomalies
involves a cubic Diophantine equation [46]; however, it is possible to find solutions with continuous parameters, which
turn out quite useful to build benchmark models.

A lot of phenomenology has been based on the minimal models [13–16, 24, 27, 47–60], in spite of it, most of these
analysis make use of some few well-known EW charge assignments leaving aside other possible solutions to the gauge
anomaly equations with the same content of fermions. A first step to know the full set of solutions was given in
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our previous work [62], where we assume two identical families and the non-universality show up only in the third
generation. In the present manuscript, we allow non-universal charges for leptons and quarks in the three families,
which result quite convenient in the study of the LHCb anomalies. Under some reasonable assumptions, many of
these models are able to evade the FCNC constraints.

The paper is organized as follows: in Section II we derive the general expressions for the chiral charges of the
models. In Section IV we derive the 95% C.L. allowed limits on the model parameters by the most recent LHC data
and the corresponding limits by the low energy EW data. Section V summarizes our conclusions.

II. THE SU(2)L ⊗ U(1)⊗ U(1)′ GAUGE SYMMETRY

The aim of the present work is to build the most general parameterization for the minimal EW extension of the SM,
limiting ourselves to the SM fermions plus right-handed neutrinos. In order to accomplish our purpose it is necessary
to avoid the hypothesis of universality; with this in mind, let us consider the gauge group SU(2)⊗U(1)⊗U(1)′ as a
non-universal anomaly-free extension of the EW sector of the SM.

In what follows T1L, T2L and T3L denote the generators of SU(2)L, while Y and QZ′ denote the generators of U(1)
and U(1)′, respectively. The covariant derivative for our model is given by [63]

Dµ = ∂µ − ig
−→
T L ·

−→
Aµ − igY Y BY µ − igZ′QZ′Z ′µ, (1)

where g, gY and gZ′ are the gauge couplings associated with the SU(2)L, U(1) and U(1)′ gauge groups, respectively,

and
−→
Aµ, BY µ and Z ′µ stand for the corresponding gauge fields.

In order to find the most general solution to gauge anomaly cancellation, all families have different quantum
numbers, because of this, at least two Higgs doublets are required in order to give masses to the three families, so:

〈Φi〉T = (0, vi/
√

2), i = 1, 2. (2)

At this stage, it is important to stress that we do not intend to report a model, instead our purpose is to show a
general solution to the anomaly cancellation equations. We added two Higgs doublets since it represents the minimal
scalar field content in order to have Yukawa couplings for a non-universal Z ′ gauge boson. In our solution, every
set of parameters represents a possible electroweak model. For every choice of the Z ′ charges it is possible to choose
additional scalars in order to reproduce the mixing angles in the lepton and quark sectors. From general grounds,
with the Higgs structure of our model it is possible to generate mass matrices with four texture zeros in the lepton and
quark sectors. That is possible since that in our solution two families couple to a single Higgs doublet and just one
of the families couples to a different scalar doublet. It is well-known that even mass matrices with five texture zeros
are able to generate the mixing matrices for the lepton and quark sectors [61]. Thus in principle it is not forbidden
for four texture zero mass matrices to generenate the CKM and PMNS mixings. Any case, as we mentioned above,
for a particular choice of the Z ′ charges there is possible to add new scalars if needed.

A. Gauge anomaly cancellation

For the SU(2)L⊗U(1)⊗U(1)′ symmetry with the particle content shown in table I, the non-trivial gauge anomaly
equations are:

[SU(2)]2U(1)′ : 0 = Σq +
1

3
Σl,

[SU(3)]2U(1)′ : 0 = 2Σq − Σu− Σd,

[grav]2U(1)′ : 0 = 6Σq − 3(Σu+ Σd) + 2Σl − Σn− Σe,

[U(1)]2U(1)′ : 0 =
1

3
Σq − 8

3
Σu− 2

3
Σd+ Σl − 2Σe,

U(1)[U(1)′]2 : 0 = Σq2 − 2Σu2 + Σd2 − Σl2 + Σe2,

[U(1)′]3 : 0 = 6Σq3 − 3(Σu3 + Σd3) + 2Σl3 − Σn3 − Σe3, (3)
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Particles Spin SU(3)C SU(2)L U(1)Y U(1)′

lLi 1/2 1 2 -1/2 li

eRi 1/2 1 1 -1 ei

νRi 1/2 1 1 0 ni

qLi 1/2 3 2 1/6 qi

uRi 1/2 3 1 2/3 ui

dRi 1/2 3 1 -1/3 di

Φi 0 1 2 1/2 φi

TABLE I: Particle content. The subindex i = 1, 2, 3 stand for the family number in the interaction basis. In our solution
φ2 = φ3 in such a way that only two Higgs doublets are needed. However, sometimes we keep the notation φi, which is quite
convenient for notation purposes.

where Σf = f1 + f2 + f3. We also take into account the constraints coming from the Yukawa couplings:

LY ⊃ l1LΦ̃1ν1R + l1LΦ1e1R + q1LΦ̃1u1R + q1LΦ1d1R+

l2LΦ̃2ν2R + l2LΦ2e2R + q2LΦ̃2u2R + q2LΦ2d2R+

l3LΦ̃2ν3R + l3LΦ2e3R + q3LΦ̃2u3R + q3LΦ2d3R + h.c. (4)

The corresponding constraints coming from the terms in the above Lagrangian are (where φ2 = φ3):

0 = ei − li + φi,

0 = ni − li − φi,
0 = di − qi + φi,

0 = ui − qi − φi. (5)

The solution to the gauge anomaly equations (3) and the constraints from the Yukawa interaction terms (5) corresponds
to the charges shown in table II (there are six solutions corresponding to the permutations between the indices ijk).
In general, every one of these solutions depends on six parameters, (qi, ni), with i = 1, 2, 3, corresponding to the
Z ′ charges for the quark doublet and the right-handed neutrino in every generation, respectively. By removing the
constraint φj = φk there are two additional solutions which will be reported elsewhere since they do not fit well the
flavor anomalies.

f εZ
′
(f)

li −3qi

ei −ni − 6qi

ui +ni + 4qi

di −ni − 2qi

lj + 1
2
[nj − nk − 3(qj + qk)]

ej −nk − 3(qj + qk)

uj + 1
2
(nj + nk + 5qj + 3qk)

dj − 1
2
(nj + nk + qj + 3qk)

lk + 1
2
[−nj + nk − 3(qj + qk)]

ek −nj − 3(qj + qk)

uk + 1
2
(nj + nk + 3qj + 5qk)

dk − 1
2
(nj + nk + 3qj + qk)

TABLE II: The Z′ couplings for the Higgs doublets Φi and Φj are φi = ni + 3qi and φj = φk = 1
2
[nj + nk + 3(qj + qk)],

respectively. The higgs field φi couples to fermions in the i-th family. The integers ijk are a permutation of 123.

By setting (nj − nk)/2 = Li = −Lk = 1, nk = −1 and qi = qj = qk = ni = 0, from this solution we can obtain the
model Lj −Lk [22] where Li is 1 for the leptons in the i-th family and zero otherwise. From these solutions, the most
known model is the Lµ − Lτ model, which has been widely used to explain the g − 2 anomaly [51].
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III. MIXING MATRICES FOR NON-UNIVERSAL Z′ MODELS

Since the SM is universal there is no problem with the quantum numbers to generate the mass matrices for the
quark and lepton sectors, the same is true for electroweak extensions of the standard model with universal couplings;
however, non-universal models require additional scalars to generate the right mixing for the SM fermions.

A. Models with a non-universal right-handed sector

By setting in table (II) qi = qj = qk and nj = nk the charges of the left-handed fermions become universal,
while the right-handed charges are not. This model could be useful since the non-universal sector is singlet under
SU(2)L, hence, we can avoid phenomenological constraints by chosen the right-handed mixing in a convenient way.
The Yukawa interaction terms can be chosen as:

L =
(
q̄TLi, q̄

T
Lj , q̄

T
Lk

)yuiiΦ̃i yuijΦ̃j yuikΦ̃j

yujiΦ̃i yujjΦ̃j yujkΦ̃j

yukiΦ̃i y
u
kjΦ̃j yukkΦ̃j


uRiuRj
uRk

 (6)

+
(
q̄TLi, q̄

T
Lj , q̄

T
Lk

)ydiiΦi ydijΦj ydikΦj

ydjiΦi ydjjΦj ydjkΦj

ydkiΦi y
d
kjΦj ydkkΦj


dRidRj
dRk

 . (7)

The Higgs charges under the new U(1)′ are QZ′(Φi) = ni + 3qi and QZ′(Φj) = nj + 3qi. This model avoids flavor
changing neutral currents in the quark sector associated with non-universal left-handed couplings (non-universal
right-handed couplings are not a problem because in these cases the mixing of the right-handed components is not
determined by the model and can be chosen in a convenient way.). This model has three free parameters which are
enough for several applications. With Φi and Φj , we can also give mass to the lepton sector. So, this model only
needs two Higgs doublets to give mass to all standard model fermions.

B. Mixing matrices for 2+1 models

The 2+1 models have identical U(1)′ charges for the k, j fermion families but allow different charges for the i family,
for these models it is possible to generate the CKM mixing matrix by adding two additional Higgs doublets, Hu and
Hd, coupling to the quark sector in a procedure similar to that outlined in reference [16]. A similar treatment is
possible in the lepton sector by adding another couple of Higgs doublets. It is important to notice that one or several
scalar fields can acquire a non-zero vacuum expectation value to break the U(1)′ symmetry, so we don’t expect a
proliferation of Goldstone bosons. In order to implement the 2+1 models we impose the conditions1 qj = qk and
nj = nk to the Z ′ charges in table (II) in such a way that the families j and k will have identical charges.

L =
(
q̄TLi, q̄

T
Lj , q̄

T
Lk

)yuiiΦ̃i huijH̃u huikH̃
u

0 yujjΦ̃j yujkΦ̃j

0 yukjΦ̃j yukkΦ̃j


uRiuRj
uRk


+
(
q̄TLi, q̄

T
Lj , q̄

T
Lk

) ydiiΦi 0 0

hdjiH
d ydjjΦj ydjkΦj

hdkiH
d ydkjΦj ydkkΦj


dRidRj
dRk

 . (8)

The Z ′ charges of the additional Higgs doublets are QZ′(H
u) = (nj + 4qj − qi) and QZ′(H

d) = ni + 2qi + qj .
According to reference [16] these textures for the quark mass matrices are enough to generate the CKM mass matrix.
By Proceeding similarly in the lepton sector, assuming Dirac masses for the neutrinos, it is possible to generate the
PMNS matrix adding two Higgs doublets Hν and He with Z ′ charges QZ′(H

ν) = nj+3qi and QZ′(H
e) = ni+6qi−3qj ,

respectively. There is also possible to work with Majorana masses under the same assumptions [16]. There are other
ways to couple additional scalars to generate the CKM; however, we aim to exemplify the procedure.

1 Notice that the unique difference respect to the models in the previous section is the condition qi = qj
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O Value [64, 68, 72] SM prediction OSM [64] ∆O = O −OSM

QW (p) 0.0719± 0.0045 0.0708± 0.0003 4
(

MZ
g1MZ′

)2

∆ee
A

(
2∆uu

V + ∆dd
V

)
QW (Cs) −72.62± 0.43 −73.25± 0.02 Z∆QW (p) +N∆QW (n)

QW (e) −0.0403± 0.0053 −0.0473± 0.0003 4
(

MZ
g1MZ′

)2

∆ee
A ∆ee

V

1−
∑
q=d,s,b |Vuq|

2 1− 0.9999(6) 0 3
4π2

M2
W

M2
Z′

(
ln

M2
Z′

M2
W

)
∆µµ
L

(
∆µµ
L −∆dd

L

)
CNP

9 (µ) −1.29+0.21
−0.20 0 − 1

g2
1M

2
Z′

∆sbL ∆
µµ̄
V

V ∗tsVtb sin2 θW

CNP
10 (µ) +0.79+0.26

−0.24 0 − 1
g2
1M

2
Z′

∆sbL ∆
µµ̄
A

V ∗tsVtb sin2 θW

σSM+Z′

σSM
0.83± 0.18 1

1+(1+4s2W+∆
µµ
V

∆ννL v2/M2
Z′)

2

1+(1+4s2
W

)2
− 1

TABLE III: Experimental value and the new physics prediction for the shift in the weak charge of the protonQW (p) [68], Cesium
QW (Cs) and the electron QW (e), owed to the interaction with the Z′. The fourth observable is the constraint on the violation
of the first-row CKM unitarity [64, 71]. Constraints on neutrino trident production and the limits on the Wilson coefficients
C9 and C10 are also included. For the rotation from the weak basis to the mass eigenstates we adopt the convention [73]:

∆ff
L,R = gZ′ε

Z′
L,R(f) for up-type quarks, i.e., u, c, t, right-handed down-type quarks, i.e., dR, sR, bR (to avoid FCNC) and

charged leptons. For left-handed down-type quarks, i.e., d, s and b we use ∆fg
L = gZ′

∑
f ′,f ′′ V

†ff ′
CKM ε

Z′
L (f ′)δf ′,f ′′V

f ′′g
CKM ,

and a similar expression for neutrinos but using the PMNS matrix. It is useful to define the vector and axial expressions
∆ff
V,A = ∆ff

R ±∆ff
L [74]. The neutron weak charge QW (n) is similar to that of the proton by interchanging u↔ d.

IV. FLAVOR ANOMALIES AND THE ELECTROWEAK CONSTRAINTS

Part of the aim of this work is to show that it is possible to adjust the flavor anomalies by minimal Z ′ models. In
order to demonstrate this statement, we carry out a χ2 analysis including the most relevant constraints on the Z ′

parameter space. For models with axial couplings to the electron different from zero i.e., εZ
′

L − εZ
′

R 6= 0, important
constraints come from parity-violation experiments which result from the measurements of the weak charges of the
cesium [64–66], the electron [64, 67] and the proton [64, 68, 69]. Another constraint that only involves left-handed
chiral charges derives from the CKM unitarity [70, 71]. This constraint is important since it applies even for models
with zero couplings to the quarks.

The C9 and C10 observables, which are involved in the recent discussions about the LHCb anomalies [2, 5–10], have
a value different from zero in the SM; our purpose is to include in the analysis the corresponding corrections to these
coefficients due to the interaction of the SM fermions with a Z ′ gauge boson. These shifts are denoted by CNP

9 and
CNP

10 and are expect to be zero in the SM as indicated in table (IV).

We also include constraints coming from neutrino trident production in the scattering of muon neutrino with
nuclei. The effective Lagrangian for the new physics involved in this process is Lνµ→νµµµ̄ = −CW µ̄γαµν̄γαPLν,

where CW = ∆µµ
V ∆νν

L /(2M
2
Z′) is the Wilson coefficient at tree level. From this result we obtain a contribution to the

neutrino-nucleon scattering like the one shown in the last row in table IV [16, 75].
By choosing (i, j, k) = (1, 2, 3) in table II and identifying these labels with the charges of the first, second and third

family, respectively, it is possible to obtain a solution with zero couplings to the first family, i.e., q1 = n1 = 0. This
choice has a double purpose, first of all, to avoid the strongest constraints from colliders, which are weakened for a
Z ′ with zero couplings to the up and down quarks, and second, avoid contributions of the Z ′ boson to the C9(e)
and C10(e) coefficients. In order to avoid FCNC, we also impose that the Z ′ couplings to the left-handed down and
left-handed strange be identical.

Under these restrictions and some other on the absolute value of the charges (see the caption in table IV), we found
good fits for Z ′ masses below 2.5 TeV (see table V).

The pulls of the observables in table IV are shown in table IV. In order to avoid a best-fit point in the non-
perturbative region in the minimization of the χ2, we restrict the absolute value of the parameters to be less than
1 for the second generation and 3 for l3 which corresponds to the Z ′ left-chiral coupling to the τ (except for q3 and
l2 which were set at 0.6 and 1.1875, respectively, in order to avoid FCNC constraints and a good fit for the C9(µ)
and C10(µ), simultaneously; however, other choices are possible). By changing these conditions other solutions are
possible; however, our aim is to show that it is possible to build a model satisfying all the constraints. It is important
to emphasize that because the Z ′ couplings to the first family are zero, there is no contribution to the weak charge
of the cesium, proton, and the electron, hence the corresponding pulls for these observables are the same as those of
SM.
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Pulli=
Oiexp−O

i
th√

σi2exp+σi2
th

Oi QW (p) QW (Cs) QW (e) CKM C9 C10 ν-Trident χ2
min

0.244 1.46 1.38 -1.10 -0.575 0.700 -1.00 7.13

TABLE IV: Pulls for low energy experiments in the χ2 minimization for a MZ′ = 2.5 TeV. In this analysis we identify i = 1, 2, 3
with the first, second and third generation of fermions, respectively. The minimization was carried out by imposing the
constraints q1 = q2, and q1 = u1 = d1 = 0, in order to avoid FCNC and LHC constraints, respectively. This choice has a double
purpose since it forbids any contribution of the Z′ to C9(e) and C10(e) which involve fermions of the first family. To evade too
large lepton couplings, in order to avoid non-perturbative charges, in the second and third family we restrict the Z′ couplings
of the SM fermions of the second and third families to have an absolute value smaller than 1 and 3, respectively (except for
q3 and l2 which were set at 0.6 and 1.1875, respectively, in order to avoid FCNC constraints and a good fit for the C9(µ) and
C10(µ), simultaneously; however, other choices are possible). We did not impose any constraint on the right-handed neutrino
couplings ni due to the absence of constraints on these parameters. For the minimization of the χ2 we restrict the absolute
value of the parameters to be less than 1 for the second generation, and 3 for l3 which corresponds to the Z′ left-chiral coupling
to the τ . Another sets of charges are also possible by changing these constraints.

MZ′ = 2.5 TeV i = 1 i = 2 i = 3

gZ′ li 0 1.1875 -2.9875

gZ′ei 0 0.3749 -3.8001

gZ′ni 0 2.0001 -2.1749

gZ′qi 0 0 0.6000

gZ′ui 0 0.8126 1.4126

gZ′di 0 -0.8126 -0.2126

gZ′φi 0 0.8126

TABLE V: Best fit values for the Z′ chiral charges of SM fermions, right-handed neutrinos and the Higgs doublets. i = 1, 2, 3
correspond to the first, second and third generation of fermions.

In figure 1 the 95% CL allowed regions for several observables are shown. It is important to stress that a similar
plot exists between any couple of parameters of the model. For this reason it is difficult to obtain general conclusions
from this figure; however, the plot serves to get some idea about how each observable put constraints on the parameter
space. These parameters, n2 and q1, are important owing that they are related to the observables of our analysis. n2

appears in all the charges of the second family except in the Z ′ coupling of the right-handed muon. q1 corresponds
to the Z ′ coupling of the left-handed up and down quark and the Z ′ coupling of the left-handed electron is also
proportional to this parameter. The latter is important for the collider constraints [62, 77–80].

For the time being, the strongest constraints come from the proton-proton collisions data collected by the ATLAS
experiment at the LHC with an integrated luminosity of 36.1 fb−1 at a center of mass energy of 13 TeV [81]. In
particular, we used the upper limits at 95% C.L. on the total cross-section of the Z ′ decaying into dileptons (i.e.,
e+e− and µ+µ−). Figure 1 shows the contours in the parameter space of the minimal models at 95% C.L. for
MZ′ = 2.5TeV. We obtain these limits from the intersection of σNLO(pp → Z ′ → l−l+) with the ATLAS 95% C.L.
upper limits on the cross-section (for additional details see reference [82]). As a cross-check we calculated these limits
for the sequential SM and some E6 models finding the same value than that reported by the collaboration [80].

A. Flavor changing neutral currents

We assume zero mixing between the Z and Z ′ 2, in such a way that all the constraints proportional to the Z-Z ′

mixing angle θZ-Z′ in section 3.7 in the classical paper of Langacker and Plumacher [83] are satisfied automatically.
The constraint coming from µ-e conversion in a muonic atom has two contributions (Eq. (22) in reference [83]) , one

2 It is true that a θZ′−Z exist owing to the existence of Higgs sector, however, due to our particular example in table V has zero couplings
to the leptons and quarks of the first generation almost all the observables in the global analysis [76] have zero contributions from a Z′

model with these couplings. Any case there is a contribution to the mixing from the equation 2.4 in [76] but it is easier to see that this
value does not surpass 4× 10−5.
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FIG. 1: Colored regions correspond to the allowed parameter space at the 95% C.L for a MZ′ = 2.5TeV. The region
enclosed between the black-dashed lines corresponds to the 95% C.L. allowed parameter space by the cesium weak charge
measurements [64–66, 76]. The yellow region corresponds to the 95% C.L. allowed parameter space by the electron weak
charge measurements in Moller scattering [64, 67]. The green region corresponds to the 95% C.L. allowed parameter space
by the proton weak charge measurements [68]. The region enclosed between the orange-dot-dashed lines corresponds to the
95% C.L. allowed parameter space by the constraints on the violation of the first-row CKM unitarity [70, 71]. By combining
all the low energy data considered in our analysis the 95% C.L. allowed parameter space corresponds to the red region. The
cyan and magenta regions correspond to the 95% C.L. parameter spaces consistent with the best fit values for the C9 and
C10, respectively. The blue region corresponds to the 95% C.L. parameter space allowed by data from proton-proton collisions
decaying to µ pairs in the ATLAS detector for an integrated luminosity of 36.1 fb−1 at a center of mass energy of 13TeV.

proportional to θZ-Z′ which is proportional to Z ′ flavor violating couplings and a contribution proportional to the Z ′

couplings to the up and the down quarks which are zero in our model; therefore, the two terms are zero and satisfy the
restrictions automatically. The strongest constraints on FCNC come from the K0-K̄0 mixing, and the CP violation in
the Kaon system, which are summarized in the equations 54-56 in reference [83]. For the flavor violating Z ′ charges
of the left-handed up and down quarks, these constraints can be avoided by choosing the left-handed coupling q1 of
the quark doublet of the first generation (uL, dL) to be identical to the corresponding charge q2 of the doublet in

the second generation (cL, sL), since the Z ′ flavor violating coupling ∆d,s
L (BdL1,2 in reference [83]) are proportional to

the difference between the charges. In order to guarantee FCNC from the Z ′ right-handed couplings ∆d,s
R is enough

with requiring a diagonal mixing between the SM right-handed fermions. That is possible since that in our model the
parameters of the mixing matrix of the right-handed fermions are free. Non-trivial constraints come from non-zero

couplings|∆d,b
L | < 6× 10−8 and |∆s,b

L | < 2× 10−6. In order to satisfy these constraints is enough if q3 < 0.61, which
represents the Z ′ coupling of the left-handed projection of the quarks in the third family. In our case we chose q3 = 0.6.
It is important to stress that there is a lot of freedom in the choice of these parameters. Our purpose is to show that
under some reasonable assumptions it is possible to build a model. It is important to mention that an update of the
reference [83] is necessary in order to include the latest measurements of the kaon properties [84, 85].
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V. CONCLUSIONS

n this work we presented an anomaly-free non-universal Z ′ family of models, which only includes SM fermions plus
right-handed neutrinos and two Higgs doublets. Our solutions have three families with different charges for every
family, i.e., the model is non-universal; however, a priori it is not possible to identify one of them with a particular
family in the SM; hence, it is necessary a study of the phenomenology of all the possibilities.

By means of an explicit example, we show that it is possible to build a model with zero couplings to the up and
down quarks and in general to the fermions of the first family, in such a way that the model evades collider constraints
and does not contribute to the corresponding the Wilson coefficients C9(e) and C10(e). Simultaneously, our solution
is flexible enough to accommodate the flavor anomalies in the Wilson coefficients C9(µ) and C10(µ). By requiring
that the left-handed couplings of the down and strange couplings be identical it is possible to avoid FCNC.

What follows is to analyze the constraints for a Z ′ with strong couplings to the µ and τ leptons but zero couplings
to the up and down quarks [17].

Acknowledgments

R. H. B. and L. M. thank the “Centro de Investigaciones ITM”. We thank Financial support from “Patrimonio
Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnoloǵıa y la Innovación, Francisco José de
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