Test de universalidad leptónica

Seminario para el semillero de investigación en altas energías

Oscar Rosero · Asesor: Eduardo Rojas, Ph.D Marzo de 2022

Grupo de investigación en física de altas energías. Departamento de Física.

Universidad de Nariño TANTVM POSSVMVS QVANTVM SCIMVS 1. Breve introducción a la teoría de partículas elementales

2. Interacciones débiles

3. Anomalías de sabor en decaimientos semileptónicos

4. Conclusiones

5. Bibliografía

Breve introducción a la teoría de partículas elementales

El modelo estándar de partículas elementales

Standard Model of Elementary Particles

Fuerza	Magnitud	Teoría	Mediador
Fuerte	10	Cromodinámica	Gluón
EM	10^{-2}	Electrodinámica	Fotón
Débil	10^{-13}	GSW	W y Z
Gravitacional	10^{-42}	Relatividad Gral.	Gravitón

Fuente: Wikimedia.org

Generaciones o familias

Clasificación de leptones				Clasificación de quarks				
	l	Q	m (MeV)		q	Q	$m({ m MeV})$	
Primera generación {	e	-1	0.510999	Primera generación {	d	-1/3	7	
	$ u_e$	0	0		u	2/3	3	
Segunda generación {	μ	-1	105.659	Segunda generación {	s	-1/3	120	
	$ u_{\mu}$	0	0		c	2/3	1200	
Tercera generación {	au	-1	1776.99	Tercera generación $\Bigg\{$	b	-1/3	4300	
	$ u_{ au}$	0	0		t	2/3	174000	

Es prácticamente un principio universal que todas las partículas decaen a partículas más livianas, excepto que alguna ley de conservación se lo impida.

- + Fotón ightarrow estable debido a su masa cero.
- + Electrón ightarrow estable debido a conservación de la carga. Partícula cargada más liviana.
- + Protón ightarrow estable debido a la conservación del número bariónico. Barión más liviano.
- + Neutrinos \rightarrow neutrinos más livianos protegidos por conservación del número leptónico.

Existen diferentes modos de decaimiento ("branching ratios"), e.g.:

$$K^{+} \rightarrow \begin{cases} \mu^{+} + \nu_{\mu} & 64\% \\ \pi^{+} + \pi^{0} & 21\% \\ \pi^{+} + \pi^{+} + \pi^{-} & 6\% \\ e^{+} + \nu_{e} + \pi^{0} & 5\% \end{cases}$$

- Conservación de la masa-energía: $E^2 = \mathbf{p}^2 c^2 + m^2 c^4$.
- Cada especie inestable tiene un tiempo de vida característico τ , e.g. $\tau_{\mu^-} = 2.2 \times 10^{-6} \,\mathrm{s}, \ \tau_{\pi^+} = 2.6 \times 10^{-8} \,\mathrm{s}, \ \tau_{\pi^0} = 8.3 \times 10^{-17} \,\mathrm{s}$.
- Tiempo de vida medio ("*half-life*"): tiempo para que la mitad de las partículas de una muestra grande decaigan

$$t_{1/2} = (\ln 2)\tau$$
.

• Propósito de la teoría de partículas elementales \Rightarrow calcular tiempos de vida, "branching ratiosz secciones eficaces.

Leyes dinámicas de conservación

- 1. *Carga*: Todas las interacciones conservan carga eléctrica. *W*'s pueden cargar la diferencia.
- 2. *Color*: Interacciones EM y débil no afectan el color. Gluones pueden cargar la diferencia. Conservación: cero a la entrada, cero a la salida.
- Número bariónico: (1 para bariones, -1 para antibariones, 0 para todo lo demás) Número total de quarks es constante en un vértice.

- Número leptónico: Interacción fuerte no toca leptones. EM deja iguales los leptones. Int. Débil deja número leptónico, pero puede cambiar el leptón. μ, τ y e separados en general. Oscilaciones de neutrinos parecen indicar que esto no es universal.
- 5. *Sabor*: Conservado en interacciones fuertes, pero no en interacciones débiles.

- **GSW**: Unificación electrodébil. Inicia con 4 mediadores no-masivos. 3 de ellos adquieren masa mediante mecanismo de Higgs.
- **SU(5)**: Grupos Gauge $SU(3) \otimes SU(2) \otimes SU(1)$. Unificación de las tres fuerzas. Implicaciones fenomenológicas que lo vuelven inviable.
- **Pati-Salam**: Cuatro colores de quarks. Cuarto color asociado a los leptones. Predice existencia de corrientes derechas.
- Cuerdas: Unificación de las cuatro fuerzas.

Diagramas de Feynman

Elementos:

- · Lineas externas \Rightarrow partículas reales susceptibles de ser detectadas.
- Lineas internas \Rightarrow partículas virtuales que contribuyen un propagador según la teoría.
- Vértices \Rightarrow Contribuyen un factor de vértice que incluye constante de acoplamiento.

Interacciones débiles

Interacciones débiles

- "Cosa" que produce las interacciones débiles \Rightarrow no nombre específico... Carga débil \rightarrow todos los quarks y leptones la portan.
- Dos tipos: $\begin{cases} Cargadas \longrightarrow W^+, W^- & (80.40 \,\text{GeV}) \\ Neutras \longrightarrow Z & (91.18 \,\text{GeV}) \end{cases}$
- Violación de paridad (simetría espejo) firma distintiva.
- · Cambio de sabor en interacciones cargadas.

Vértices débiles fundamentales (Fuente: Griffiths, 2008)

Decaimientos semileptónicos y hadrónicos puros

Acoplamiento de la interacción débil

Pares acoplados: Valores experimentales Propagador: matriz CKM: $rac{-i(g_{\mu
u}-q_{\mu}q_{
u}/M^2c^2)}{q^2-M^2c^2}$ $\begin{pmatrix} u \\ d' \end{pmatrix}, \begin{pmatrix} c \\ s' \end{pmatrix}, \begin{pmatrix} t \\ b' \end{pmatrix} \begin{pmatrix} 0.974 & 0.227 & 0.004 \\ 0.227 & 9.973 & 0.042 \\ 0.008 & 0.042 & 0.999 \end{pmatrix}$ Factor de vértice: Matriz CKM: $\frac{ig_w}{2\sqrt{2}}\gamma^{\mu}(1-\gamma^5)$ $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ub} & V_{ub} & V_{ub} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

Anomalías de sabor en decaimientos semileptónicos

El acoplamiento de todos los leptones a los bosones gauge es independiente del sabor.

- Electrón, muón y tau son idénticos, excepto por su masa.
- Comparación de tasas de decaimiento de muones y taus a electrones. Razón proporcional a $(m_{\tau}/m_{\mu})^5 (g_{\tau}/g_{\mu})^2$.

Detector de LHCb.

Nueva física?

• Insinuación de nueva física más allá del modelo estándar: anomalía en la desintegración del mesón $B \longrightarrow$ posible violación de universalidad leptónica.

"Triángulo de universalidad"(Fuente: Patterson, 1995).

Anomalías en el decaimiento del mesón B

Mediciones de R_K en diferentes experimentos (Fuente: LHCb, 2021).

- Mediciones en LHCb, BaBar y Belle de los decaimientos $B \rightarrow K l^+ l^-$ y $B \rightarrow K^* l^+ l^-$.
- *R_K*, *R_{K*}*: razón de las fracciones de ramificación (branching ratio).

$$R_{\rm K}[q_{\rm min}^2, q_{\rm max}^2] = \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \mathrm{d}q^2 \mathrm{d}\Gamma(\mathrm{B}^+ \to \mathrm{K}^+ \mu^+ \mu^-)/\mathrm{d}q^2}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \mathrm{d}q^2 \mathrm{d}\Gamma(\mathrm{B}^+ \to \mathrm{K}^+ \mathrm{e}^+ \mathrm{e}^-)/\mathrm{d}q^2} \,.$$
(1)

- Modelo estándar predice resultado ~ 1 . LHCb: $R_K = 0.864^{+0.044}_{-0.041}$, discrepancia de 3.1 desv. est.

Modelos de nueva física

Contribución del ME al decaimiento de B^+ .

Posible contribución de nueva física que involucra un leptoquark (LQ).

- Nuevas partículas como los leptoquarks o el Z'.
- · Nuevos modelamientos de las simetrías en QFT.
- Mezclas de quarks y leptones con nuevos fermiones vectoriales.

Conclusiones

Conclusiones

- El modelo estándar es una exitosa descripción de la materia y sus interacciones.
- Resultados de nuevos experimentos sugieren que el modelo estándar debe ampliarse para dar cuenta de fenómenos recientemente observados que son incongruentes con algunas de sus predicciones teóricas.
- Las anomalías de sabor en decaimientos semileptónicos son una evidencia convincente de la existencia de física más allá del modelo estándar.
- El planteamiento de modelos de nueva física es un área de gran interés para los físicos.
- Varios modelos de nueva física pueden dar cuenta de los fenómenos observados, pero aún queda un largo camino para lograr una comprensión completa de la estructura del universo.

Bibliografía

David Griffiths.

Introduction to elementary particles. 2008.

📄 Roel Aaij et al.

Test of lepton universality in beauty-quark decays. 3 2021.

Bartosz Fornal et al. Left-Right SU(4) Vector Leptoquark Model for Flavor Anomalies. Phys. Rev. D., 99:055025, 2019.

J. Ritchie Patterson. Lepton Universality. Beamline, 25-1:7, 1995.

Wei Wang and Shuai Zhao. Implications of the R_K and R_{K*} anomalies. Chinese Physics C, 42:13105, 2018.

GRACIAS

O.D. Rosero · E. Rojas | Bibliografía · 18/18