Non-Fritzsch Like Five-Zero Texture for Quark Mass Matrices in the Standard Model

 Yithsbey Giraldo Úsuga

 Yithsbey Giraldo Úsuga}

Universidad de Nariño
Noviembre 17 de 2016

Abstract

We will consider a non-Fritzsch like five-zero texture that is completely valid and generates all the physical quantities involved, including the quark masses, the Jarlskog invariant quantity and the inner angles of the Cabibbo-Kobayashi-Maskawa unitarity triangle, and it explains the charge parity violation phenomenon at 1σ confidence level. To achieve this, non-physical phases must be included in the unitary matrices used to diagonalize the quark mass matrices, in order to put the Cabibbo-Kobayashi-Maskawa matrix in standard form. Besides, these phases can be rotated away so they do not have any physical meaning. Thus, the model has a total of nine parameters to reproduce ten physical quantities, which implies physical relationships between quark masses and/or mixings.

Introduction

Models like the Standard Model (SM) or its extensions, where the right-handed fields are $S U(2)$ singlets, it is always possible to choose a suitable basis for the right-handed quarks by using the unitary matrix coming from the polar decomposition theorem of matrix algebra, such that the resultant up- and down-type quark mass matrices become hermitian.

$$
M_{u}^{\dagger}=M_{u}, \quad \text { and } \quad M_{d}^{\dagger}=M_{d} .
$$

- In the SM, the left- and right-handed quarks can be transformed unitarily, such that the gauge currents remains invariants, and as a result quark mass matrices are transformed into new equivalent ones. This process consists basically in a common unitary transformation applied on M_{u} and M_{d} known as a "Weak Basis" (WB) Transformation [1], as follows

$$
M_{u} \rightarrow M_{u}^{\prime}=U^{\dagger} M_{u} U, \quad M_{d} \rightarrow M_{d}^{\prime}=U^{\dagger} M_{d} U
$$

where U is an arbitrary unitary matrix which preserves hermiticity of the quark mass matrices. Making a WB transformation, any physical viable quark mass matrices can be derived from specific quark mass matrices.

Quark masses and CKM

The quark masses and observed CKM matrix parameters
$\left|V_{i j}\right|$ are given at $\mu=m_{Z}$ [2]
$m_{u}=1.38_{-0.41}^{+0.42}, m_{c}=638_{-84}^{+43}, m_{t}=172100 \pm 1200$ $m_{d}=2.82 \pm 0.48, m_{s}=57_{-12}^{+18}, m_{b}=2860_{-60}^{+160}$.
$(0.97427 \pm 0.000140 .22536 \pm 0.000610 .00355 \pm 0.00015)$ $|V|=\left(\begin{array}{lll}0.22522 \pm 0.00061 & 0.97343 \pm 0.00015 & 0.0414 \pm 0.0012\end{array}\right.$ $\left.0.00886_{-0.0001232}^{+0.0033} 30.0405_{-0.0012}^{+0.0011} \quad 0.99914 \pm 0.00005\right)$ and the Jarlskog invariant is

$$
J=\left(3.06_{-0.20}^{+0.21}\right) \times 10^{-5} .
$$

1. The initial quark mass matrices

The u-diagonal representation [3, 4]:

$$
\begin{aligned}
& M_{u}=D_{u}=\left(\begin{array}{ccc}
\lambda_{1 u} & 0 & 0 \\
0 & \lambda_{2 u} & 0 \\
0 & 0 & \lambda_{3 u}
\end{array}\right), \\
& M_{d}=V D_{d} V^{\dagger}, \quad \text { where } V=U_{u}^{\dagger} U_{d} .
\end{aligned}
$$

The d-diagonal representation

Numerical Five-Zero Textures

3. Numerical quark masses (In MeV units)

$M_{d}^{\prime}=\left(\begin{array}{ccc}0 & 13.891097 & 0 \\ 13.891097 & 0 & 421.41405 \\ 0 & & 21.4105\end{array}\right.$

$$
\begin{array}{cc}
0 & 421.41405 \\
421.41405 & 2797.9042
\end{array}
$$

Analytical Five-Zero Textures and the CKM Mixing Matrix

The five-zero texture matrix derived above has the following standard form:

$$
M_{u}=P^{\dagger}\left(\begin{array}{ccc}
0 & 0 & \left|\xi_{u}\right| \\
0 & \alpha_{u} & \left|\beta_{u}\right| \\
\left|\xi_{u}\right| & \left|\beta_{u}\right| & \gamma_{u}
\end{array}\right) P, \quad M_{d}=\left(\begin{array}{ccc}
0 & \left|\xi_{d}\right| & 0 \\
\left|\xi_{d}\right| & 0 & \left|\beta_{d}\right| \\
0 & \left|\beta_{d}\right| & \alpha_{d}
\end{array}\right),
$$

where $P=\operatorname{diag}\left(e^{-i \phi_{\xi_{u}}}, e^{-i \phi_{\beta_{u}}}, 1\right)$ (with $\phi_{\beta_{u}} \equiv \arg \left(\beta_{u}\right)$ and $\left.\phi_{\xi_{u}} \equiv \arg \left(\xi_{u}\right)\right)$. We have nine free parameters, to reproduce ten physical quantities: 6 quark masses and 3 mixing angles and 1 phase from the CKM matrix, which implies physical relationships between the quark masses and/or mixings.

4. The Mixings

$$
\begin{aligned}
& \left|V_{u d}\right| \approx\left|V_{c s}\right| \approx\left|V_{t b}\right| \approx 1, \\
& \left|V_{u s}\right| \approx \sqrt{\frac{\alpha_{u}-m_{c}}{\alpha_{u}} \sqrt{\frac{m_{u}}{m_{c}}}-e^{i\left(\phi_{\beta_{u}}-\phi_{\xi_{u}}\right)} \sqrt{\frac{m_{d}}{m_{s}}},} \\
& \left|V_{c d}\right| \approx \sqrt{\frac{\alpha_{u}-m_{c}}{\alpha_{u}} \sqrt{\frac{m_{u}}{m_{c}}}-e^{i\left(\phi_{\xi_{u}}-\phi_{\beta_{u}}\right)} \sqrt{\frac{m_{d}}{m_{s}}}, ~, ~, ~} \\
& \left|V_{c b}\right| \approx \sqrt{\frac{m_{s}}{m_{b}}}-e^{i \phi_{\beta_{u}}} \sqrt{\frac{\alpha_{u}-m_{c}}{m_{t}}}, \\
& \left.\left|V_{t s}\right| \approx\left|\sqrt{\frac{m_{s}}{m_{b}}}-e^{-i \phi_{\beta_{u}}}\right| \frac{\alpha_{u}-m_{c}}{m_{t}} \right\rvert\,,
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left|V_{t d}\right|}{\left|V_{t s}\right|} \approx \frac{m_{d}}{m^{\prime}}, \\
& \left|V_{t s}\right| \approx{ }_{m_{s}}
\end{aligned}
$$

where $\alpha_{u} \ll m_{t}$ be assumed. We shall consider $\alpha_{u} \gtrsim$ m_{c} in order to fit experimental data, which gives $\left(\phi_{\beta_{u}} _\right.$ $\left.\phi_{\xi_{u}}\right) \sim-\pi / 2$, which it is an important contribution term for CP-violation

The main conclusions of this work are:
We have found only two different numerical five-zero texture patterns.
We have nine free parameters to reproduce ten physical quantities: 6 quark masses, 3 mixing angles and 1 phase from the CKM matrix, which implies physical relationships between the quark masses and/or mixings.
The GST relation is maintained, and an important contribution for CP violation is still exhibited in the context of the model.

References

[1] G.C. Branco, D. Emmanuel-Costa, R. Gonzalez Felipe, Phys.Lett.B477, 2000 [hep-ph/9911418].
[2] K. Nakamura et al. (Particle Data Group), JP G 37, 075021 (2010) and 2011 partial update for the 2012 edition (URL: http://pdg.lbl.gov).
[3] Yithsbey Giraldo, Phys.Rev.D86,093021(2012).
[4] Yithsbey Giraldo, Phys.Rev.D91,038302(2015).

