Modelo de Pati-Salam modificado para anomalías de sabor

Oscar Rosero · Eduardo Rojas

Septiembre 23 de 2022

XXIX Congreso Nacional de Física. Armenia, Quindío.

Universidad de Nariño TANTVM POSSVMVS QVANTVM SCIMVS 1. Introducción

2. Estudio detallado del modelo

3. Estudio fenomenológico

Introducción

- Modelo estándar (ME) provee explicación asombrosamente existosa de la naturaleza de las partículas elementales.
- Evidencias experimentales más significativas de física más allá del ME: Anomalías en decaimientos del mesón $B \Rightarrow$ Violación de la universalidad leptónica.
- Estas anomalías pueden explicarse mediante un leptoquark vectorial $(3,1)_{\scriptscriptstyle 2/3}$ o $(3,3)_{\scriptscriptstyle 2/3}.$
- Objetivo de este trabajo: Estudiar un modelo viable basado en la unificación de Pati-Salam que no involucre mezclas con nuevos fermiones vectoriales.

Estudio detallado del modelo

Modelo y contenido de partículas

El modelo fue propuesto por Fornal, et.al. (Phys. Rev. D 99, 055025 (2019)) se basa en el grupo gauge

$$SU(4)_L \otimes SU(4)_R \otimes SU(2)_L \otimes U(1)$$
 (1)

Descomposición en multipletes del ME

Sector de Higgs

$$\Psi_L = (4, 1, 2, 0) = (3, 2)_{\frac{1}{6}} \oplus (1, 2)_{-\frac{1}{2}}$$

$$\Psi_R^u = (1, 4, 1, \frac{1}{2}) = (3, 1)_{\frac{1}{6}} \oplus (1, 1)_0 \qquad (2)$$

$$\Psi_R^d = (1, 4, 1, -\frac{1}{2}) = (3, 1)_{-\frac{1}{3}} \oplus (1, 1)_{-1}$$

$$\Sigma_L = (4, 1, 1, \frac{1}{2}), \quad \Sigma_R = (1, 4, 1, \frac{1}{2}),$$

$$\Sigma = (\bar{4}, 4, 0)$$
(3)

Contienen Q_L, L_L, u_R, d_R, e_R y un neutrino derecho ν_R .

Estudio detallado del modelo

Generadores de SU(4)

Partimos de

 $C_{\alpha\beta} + C_{\beta\alpha},$

$$(C_{\alpha\beta})_{ik} = \delta_{\alpha i} \delta_{\beta k} \qquad (4) \qquad C_{11}'' = C_{11} - \frac{1}{3}(C_{11} + C_{22} + C_{33}) = \frac{1}{3} \begin{pmatrix} 2 & -1 & \\ & -1 & \\ & & 0 \end{pmatrix}$$

v empleamos combinaciones lineales de la forma

$$\frac{1}{i}(C_{\alpha\beta} - C_{\beta\alpha}) \quad (5) \qquad C_{33}'' = C_{33} - \frac{1}{2}(C_{11} + C_{22} + C_{33}) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}$$

Para que las matrices diagonales tengan traza cero formamos las combinaciones:

$$C_{22}'' = C_{22} - \frac{1}{3}(C_{11} + C_{22} + C_{33}) = \frac{1}{3} \begin{pmatrix} -1 & 2 & \\ & -1 & \\ & 0 \end{pmatrix}$$
$$C_{33}'' = C_{33} - \frac{1}{3}(C_{11} + C_{22} + C_{33}) = \frac{1}{3} \begin{pmatrix} -1 & & \\ & 2 & \\ & 0 \end{pmatrix}$$

$$C_{44}'' = C_{44} - \frac{1}{3}(C_{11} + C_{22} + C_{33}) = \frac{1}{3} \begin{pmatrix} -1 & & \\ & -1 & \\ & & 3 \end{pmatrix}$$
(6)

Las combinaciones

$$\tilde{\lambda}_{3} = C_{11}'' - C_{22}'' = \begin{pmatrix} 1 & -1 \\ & 0 & 0 \end{pmatrix}, \qquad \tilde{\lambda}_{8} = \begin{pmatrix} C_{11}'' + C_{22}'' \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 \\ & -2 & 0 \end{pmatrix}$$
(7)

toman la forma de las matrices de Gell-Mann, mientras que definimos

$$\tilde{\lambda}_{15} = -3C_{44}'' = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -3 \end{pmatrix}$$

$$\tag{8}$$

como el tercer generador diagonal de SU(4).

Normalizamos de acuerdo con $\operatorname{Tr}(T_i T_j) = (1/2)\delta_{ij}$

$$T_1 = \frac{1}{2}\tilde{\lambda}_1 = \frac{1}{2}(C_{12} + C_{21}) = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad T_2 = \frac{1}{2}\tilde{\lambda}_1 = \frac{1}{2i}(C_{12} - C_{21}) = \frac{1}{2} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$T_3 = \frac{1}{2}\tilde{\lambda}_3 = \frac{1}{2} \left(C_{11}'' - C_{22}'' \right) = \frac{1}{2} \begin{pmatrix} 1 & -1 & \\ & 0 & \\ & & 0 \end{pmatrix}, \quad T_4 = \frac{1}{2}\tilde{\lambda}_4 = \frac{1}{2} (C_{13} + C_{31}) = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 & \\ 0 & 0 & 0 & \\ 1 & 0 & 0 & \\ & 1 & 0 & 0 \end{pmatrix},$$

$$T_5 = \frac{1}{2}\tilde{\lambda}_5 = \frac{1}{2i}(C_{13} - C_{31}) = \frac{1}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad T_6 = \frac{1}{2}\tilde{\lambda}_6 = \frac{1}{2}(C_{23} + C_{32}) = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$

$$T_7 = \frac{1}{2}\tilde{\lambda}_7 = \frac{1}{2i}(C_{23} - C_{32}) = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \end{pmatrix}, \quad T_8 = \frac{\sqrt{3}}{2}\tilde{\lambda}_8 = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i & 0 \end{pmatrix}.$$

Generadores de SU(4)

Los generadores que que describen transiciones entre quarks y leptones:

$$T_9 = \frac{1}{2}\tilde{\lambda}_9 = \frac{1}{2}(C_{14} + C_{41}) = \frac{1}{2}\begin{pmatrix} & 1\\ & 0\\ & 0 \end{pmatrix}, \qquad T_{10} = \frac{1}{2}\tilde{\lambda}_{10} = \frac{1}{2i}(C_{14} + C_{41}) = \frac{1}{2}\begin{pmatrix} & -i\\ & 0\\ & 0 \end{pmatrix},$$

$$T_{11} = \frac{1}{2}\tilde{\lambda}_{11} = \frac{1}{2}(C_{14} + C_{41}) = \frac{1}{2}\begin{pmatrix} 0\\ 0 & 1\\ 0 & 0 \end{pmatrix}, \quad T_{12} = \frac{1}{2}\tilde{\lambda}_{12} = \frac{1}{2i}(C_{24} + C_{42}) = \frac{1}{2}\begin{pmatrix} 0\\ -i\\ 0 & i & 0 \end{pmatrix},$$

$$T_{13} = \frac{1}{2}\tilde{\lambda}_{13} = \frac{1}{2}(C_{34} + C_{43}) = \frac{1}{2}\binom{0}{0} \frac{1}{1}, \quad T_{14} = \frac{1}{2}\tilde{\lambda}_{14} = \frac{1}{2i}(C_{34} + C_{43}) = \frac{1}{2}\binom{0}{0} \frac{1}{1}.$$

Y el generador de la carga de SU(4) al romper

$$T_{15} = \frac{1}{2\sqrt{6}}\tilde{\lambda}_{15} = \frac{1}{2\sqrt{6}} \begin{pmatrix} 1 & & \\ & 1 & \\ & & -3 \end{pmatrix}.$$

Estudio detallado del modelo

Operador de carga

Los grupos SU(4) rompen a SU(3)

$$\operatorname{SU}(4)_{L/R} \to \operatorname{SU}(3)_{L/R} \otimes \operatorname{U}(1)_{L/R\,31}.$$
(9)

Las branching rules de este rompimiento conllevan a

$$4 \to 3_1 \oplus 1_{-3} \,, \tag{10}$$

De donde es fácil inferir el generador del grupo $U(1)_{L/R 31}$ (excepto por un factor constante)

$$T_L^{15} = T_R^{15} = \frac{1}{2\sqrt{6}} \begin{pmatrix} 1 & & \\ & 1 & \\ & & -3 \end{pmatrix}.$$
 (11)

El operador de carga se define como una combinación lineal de los generadores diagonales de todos los grupos

$$Q = (t^3) + A(T_L^{15} + T_R^{15}) + BY', \qquad (12)$$

Aplicando sobre los multipletes:

$$\begin{split} \Psi_L &= (4,1,2,0) = (3,2)_{\frac{1}{6}} \oplus (1,2)_{-\frac{1}{2}} : \qquad \Psi_L^{i1} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \nu_e \end{pmatrix}_L, \qquad \Psi_L^{i2} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ e \end{pmatrix}_L, \\ \Psi_R^{i1} &= (1,4,1,\frac{1}{2}) = (3,1)_{\frac{1}{6}} \oplus (1,1)_0 \\ \Psi_R^{d} &= (1,4,1,-\frac{1}{2}) = (3,1)_{-\frac{1}{3}} \oplus (1,1)_{-1} \end{split}$$

Es posible obtener los coeficientes

$$Q = t^3 + \frac{\sqrt{6}}{3} \left(T_L^{15} + T_R^{15} \right) + Y'.$$
(13)

Este operador debe tener un índice de isoespín y uno de $SU(4)_{L/R}$. Fijando el índice de isoespín es posible expresar los autovalores de este operador como 2 matrices 4×4

$$Q^{u} = \begin{pmatrix} \frac{2}{3} & & \\ & \frac{2}{3} & \\ & & \frac{2}{3} & \\ & & & 0 \end{pmatrix}, \quad Q^{d} = \begin{pmatrix} -\frac{1}{3} & & \\ & -\frac{1}{3} & \\ & & -\frac{1}{3} & \\ & & & -1 \end{pmatrix}$$
(14)

Estudio detallado del modelo

Lagrangiano de interacción

Las interacciones entre partículas mediadas por bosones gauge son obtenidas a partir de

$$\mathcal{L} \supset \overline{\hat{\Psi}}_{L} \gamma^{\mu} \mathcal{D}_{\mu} \hat{\Psi}_{L} + \overline{\hat{\Psi}}_{R}^{u} \mathrm{i} \gamma^{\mu} \mathcal{D}_{\mu} \hat{\Psi}_{R}^{u} + \overline{\hat{\Psi}}_{R}^{d} \mathrm{i} \gamma^{\mu} \mathcal{D}_{\mu} \hat{\Psi}_{R}^{d}, \qquad (15)$$

donde la derivada covariante:

$$D_{\mu} = \partial_{\mu} + ig_L G^A_{L\mu} T^A_L + ig_R G^A_{R\mu} T^A_R + ig_2 W^a_{\mu} t^a + ig'_1 Y'_{\mu} Y', \qquad (16)$$

Estudio detallado del modelo

Autoestados de sabor y de masa de los leptoquarks

Los leptoquarks, así como todos los bosones gauge pertenecen a la epresentación adjunta:

$$4 \times \bar{4} = 1 + 15. \tag{17}$$

Los autovalores del operador de carga:

$$Q_{kl}^{[15]} = Q_k^{[4]} + Q_l^{[\bar{4}]} = +Q_k^{[4]} - Q_l^{[4]}$$
(18)

$$Q^{[4]u} = \begin{pmatrix} \frac{2}{3} & \\ & \frac{2}{3} \\ & & \frac{2}{3} \\ & & & 0 \end{pmatrix}, \quad Q^{[4]d} = \begin{pmatrix} -\frac{1}{3} & \\ & -\frac{1}{3} \\ & & & -1 \end{pmatrix} \qquad Q^{[15]}_{kl} = \begin{pmatrix} 0 & 0 & 0 & \frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & -\frac{2}{3} & 0 \end{pmatrix}$$
(19)

Términos de interacción de SU(4)

$$ig_L G^A_{L\mu} T^A_L + ig_R G^A_{R\mu} T^A_R \tag{20}$$

Definimos el operador de bosones gauge

$$\mathbb{G}_{L/R\,\mu} \equiv G_{L/R\,\mu}^{A} T_{L/R}^{A}. \tag{21}$$

$$\mathbb{G} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \sum_{A=1}^{8} G_{\mu}^{A} T^{A} & | & X^{2} \\ \frac{1}{\sqrt{2}} \sum_{A=1}^{8} G_{\mu}^{A} T^{A} & | & X^{2} \\ & & | & X^{3} \\ -\dots & -\dots & -\dots & + & -\dots \\ X^{1*} & X^{2*} & X^{3*} & | & \frac{\sqrt{3}}{2} G_{\mu}^{15} \end{pmatrix}, \qquad X = \begin{pmatrix} X^{1} \\ X^{2} \\ X^{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \left(G_{\mu}^{9} - \mathrm{i} G_{\mu}^{10} \right) \\ \frac{1}{\sqrt{2}} \left(G_{\mu}^{11} - \mathrm{i} G_{\mu}^{12} \right) \\ \frac{1}{\sqrt{2}} \left(G_{\mu}^{13} - \mathrm{i} G_{\mu}^{14} \right) \end{pmatrix}$$

Matriz de masa de los leptoquarks

$$\mathcal{M}_X^2 = \frac{1}{4} \begin{pmatrix} g_L^2 [v_L^2 + v_{\Sigma}^2 (1+z^2)] & -2g_L g_R v_{\Sigma}^2 z \\ -2g_L g_R v_{\Sigma}^2 z & g_R^2 [v_R^2 + v_{\Sigma}^2 (1+z^2)] \end{pmatrix},$$

•

Matriz de mezcla

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_4 & \sin \theta_4 \\ -\sin \theta_4 & \cos \theta_4 \end{pmatrix} \begin{pmatrix} X_L \\ X_R \end{pmatrix}$$

Haciendo que $SU(4)_R$ rompa a una escala energética mucho mayor asumimos que los vevs de los campos escalares $v_R \gg v_L$ y $v_R \gg v_\Sigma$, con lo que la mezcla desaparece, $\sin \theta_4 = 0$ y las masas de los leptoquarks se vuelven

$$M_{X_1} = \frac{1}{2} g_L \sqrt{v_L^2 + v_{\Sigma}^2 (1 + z^2)}$$
$$M_{X_2} = \frac{1}{2} g_R v_R.$$

Estudio detallado del modelo

Estructura de sabor y términos de interacción

Dobletes izquierdos

$$Q_{Li} = \begin{pmatrix} V_{ki}^{\dagger} u_k \\ d_i \end{pmatrix}, \qquad \qquad L_{Lj} = \begin{pmatrix} U_{kj} \nu_j \\ \ell_j \end{pmatrix}, \qquad (22)$$

Lagrangiano de interacción

$$\mathcal{L} \supset \frac{g_L}{\sqrt{2}} X_L \Big[x_{Lu}^{ij}(\overline{u}_i \gamma^\mu \nu_j) + x_{Ld}^{ij}(\overline{d}_i \gamma^\mu \ell_j) \Big] + \text{h.c.} \Big],$$
(23)

donde $x_{Lu} \equiv V^{\dagger} x_{Ld} U$.

Estudio fenomenológico

Estudio fenomenológico

Análisis independiente del modelo

Análisis independiente del modelo

$$\mathcal{L} \supset U_{1\mu} \sum_{i,j=1,2,3} \left[x_L^{ij} \left(\overline{d}_L^i \gamma^\mu e_L^j \right) + \left(V^{\dagger} x_L U \right)_i j \left(\overline{u}_L^i \gamma^\mu \nu_L^j \right) + x_R^{ij} \left(\overline{d}_R^i \gamma^\mu e_R^j \right) \right] + \text{h.c} ,$$

Para evitar restricciones provenientes de conversiones $\mu - e$ a nivel nuclear y violaciones de paridad usamos las estructura del modelo mínimo

$$x_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & x_L^{s\mu} & x_L^{s\tau} \\ 0 & x_L^{b\mu} & x_L^{b\tau} \end{pmatrix} \,.$$

Los decaimientos semileptónicos del mesón B involucran una transición $b\to s\mu^+\mu^-$ via el Hamiltoniano efectivo

$$\mathcal{H}_{\text{eff}}(b \to s\mu^{+}\mu^{-}) = -\frac{\alpha_{\text{em}G_{F}}}{\sqrt{2}\pi} V_{tb} V_{ts}^{*} \Big[C_{9}^{bs\mu\mu} (\bar{s}P_{L}\gamma_{\beta}b) \Big(\overline{\mu}\gamma^{\beta}\mu\Big) + C_{10}^{bs\mu\mu} (\bar{s}P_{L}\gamma_{\beta}b) \Big(\overline{\mu}\gamma^{\beta}\gamma_{5}\mu\Big) \Big]$$

Coeficientes de Wilson:

$$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} = -\frac{\pi}{\sqrt{2}\,G_F\alpha_{\rm em}\,V_{tb}\,V_{ts}^*} \frac{x_L^{s\mu}\left(x_L^{b\mu}\right)^*}{M_{U_1}^2}\,.$$

Valores encontrados por Altmannshofer & Stangl 2021 para $C_9 = -C_{10}$ a partir de todos los decaimientos raros del mesón *B*:

$$C_{9\,\mathrm{ex}}^{bs\mu\mu} = - C_{10\,\mathrm{ex}}^{bs\mu\mu} = -0.39 \pm 0.07$$
 .

Análisis independiente del modelo

Intervalo de 1 σ de los acoplamientos de sabor obtenidos a partir del ajuste de χ^2 para un leptoquark con $M_{U_1} = 10$ TeV:

Estudio fenomenológico

Fenomenología del modelo

Los estados de los leptoquarks X_1 , X_2 modifican los coeficientes de wilson a la forma

$$C_9^{\mu\mu} = -C_{10}^{\mu\mu} = -\frac{\sqrt{2}\pi^2 g_L^2 x_{Ld}^{s\mu} x_{Ld}^{b\mu *}}{G_F e^2 V_{tb} V_{ts}^*} \left[\frac{\cos^2 \theta_4}{M_{X_1}^2} + \frac{\sin^2 \theta_4}{M_{X_2}^2} \right].$$
 (24)

Con la restricción sobre la energía a la que rompe $\mathrm{SU}(4)_R$ obtenemos

$$C_9^{\mu\mu} = -C_{10}^{\mu\mu} = -\frac{\pi}{\sqrt{2}G_F \alpha_{\rm em} V_{tb} V_{ts}^*} \frac{1}{M_X^2} \left(\frac{g_L}{\sqrt{2}} x_{Ld}^{s\mu}\right) \left(\frac{g_L}{\sqrt{2}} x_{Ld}^{b\mu}\right),\tag{25}$$

Parametrización de la matriz de acoplamientos

A partir de un análisis sobre las búsquedas para $K_L^0 \to e^{\pm} \mu^{\mp}$ y conversiones $e - \mu$, Fornal et.al. parametrizan los acoplamientos como

$$x_{Ld} \approx e^{i\phi} \begin{pmatrix} \delta_1 & \delta_2 & 1\\ e^{i\phi_1}\cos\theta & e^{i\phi_2}\sin\theta & \delta_3\\ -e^{i\phi_2}\sin\theta & e^{i\phi_1}\cos\theta & \delta_4 \end{pmatrix},$$

donde $|\delta_i| \ll 1$. A partir de constraints para las anomalías $R_{K^{(*)}}$ se establece

 $\cos\left(\phi_1+\phi_2\right)\approx 0.18\,,$

Adiconalmente se ubica la constante

$$g_L \approx 1,06 g_s$$
,

con $g_s \approx 0.96$ siendo la constante de acoplamiento fuerte a 10 TeV.

Región permitida

Región permitida a 95 % CL para un leptoquark con $M_X = 10 \text{TeV}$

GRACIAS

