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Abstract A Peccei-Quinn (PQ) symmetry is proposed, in order to generate in the Standard Model (SM)
quark sector a realistic mass matrix ansatz with five texture-zeros. Limiting our analysis to Hermitian
mass matrices we show that this requires a minimum of 4 Higgs doublets. This model allows assigning
values close to 1 for several Yukawa couplings, giving insight into the origin of the mass scales in the SM.
Since the PQ charges are non-universal the model features Flavor-Changing Neutral Currents (FCNC) at
the tree level. From the analytical expressions for the FCNC we report the allowed region in the parameter
space obtained from the measurements of branching ratios of semileptonic meson decays.

PACS. 11.30.Hv Flavor symmetries – 12.60.-i models beyond the standard models – 14.80.Va Axions
– 14.60.St Non-standard-model particles Higgs bosons neutrinos – 14.80.-j Other particles (including
hypothetical)

1 Introduction

The discovery of the Higgs boson by the ATLAS [1] and
CMS [2] collaborations with a mass of 125 GeV is very im-
portant because it opens up the possibility of new physics
in the scalar sector. So that, from a theoretical viewpoint,
an extended Higgs sector is well motivated [3], the best-
known extensions are: the two Higgs doublet model [4,5,
6,7,8,9,10,11,12,13,14,15,16] and models with additional
singlet scalar fields [17]. On the other hand, the discovery
of the Higgs boson gives experimental support to the spon-
taneous symmetry breaking which is the mechanism that
explains the origin of the masses for both, fermions and
weak gauge bosons.

The Standard Model (SM) symmetry breaking mecha-
nism [18,19,20] with Higgs-fermion couplings proportional
to the fermion masses is consistent with the experimen-
tal data; however, there are various orders of magnitude
between the fermion masses which cannot be explained
in the context of the SM. These masses, the three mix-
ing angles, and the complex CP-violating phase must be
adjusted with experimental data.

The Two Higgs Doublet Model (THDM) was proposed
in order to give masses to up-type and down-type quarks [21]
where vacuum expectation values (VEV) v1 and v2 are re-
lated to the electroweak VEV by the relation v2 = v21+v

2
2 .
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This THDM allows new physics through an additional
charged scalar field which should be looked for in collid-
ers as a test of multi-Higgs models. On the other hand,
the singlet scalar fields are useful to break the U(1) gauge
symmetries in extended electroweak models or as candi-
dates for dark matter [22,23,24,25,16].

Due to having three quarks up and three quarks down,
the mass matrices are 3 × 3, and under a usual assump-
tion, these can be taken as Hermitian matrices having a
total of 18 free parameters against the ten physical pa-
rameters [26]. This feature reduces the number of matrix
parameters, easing the textures’ analysis when comparing
them with the experimental data. One method to generate
zeros and reduce the quark mass matrix parameters con-
sists of performing a Weak Basis Transformation (WBT)
on the quark fields [27,28,29]. By choosing these zeros by
the WBT, the mass spectrum can be obtained according
to the experimental results [28]. In particular, Fristzsch
proposed a quark mass matrix ansatz with six zeros[30,
31,32,33] which were put in by hand [34], but this texture
predicted for the ratio |Vub/Vcb| ≈ 0.06 a too small mag-
nitude [35] which is in strong tension with the present-day
experimental result (|Vub/Vcb|exp ≈ 0.09) [35]. For this rea-
son, some authors considered four zero-textures [36,29,37,
38]. In reference [39], the matrices with five texture-zeros
could also explain the mass hierarchy and the parameters
of the CKM matrix.

It is common to choose textures-zeros by hand with-
out an underlying theory relying on first principles. An-
other direction that has been explored in the literature is
to propose discrete symmetries and a sector with multi-
ple scalar doublets to generate the textures of the quark
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mass matrices [40,41,42,43,44,45,46,47,48,49]. It is also
possible to consider global symmetry groups that prohibit
certain Yukawa couplings and somehow generate the ze-
ros of the mentioned textures [50,51,52,53,54,55,56,57,
58,59,60,61,62,63,64,65,66,67]. Another way to obtain
these textures is through a flavor-dependent gauge sym-
metry, which can break the family universality of the Stan-
dard Model [68,43,69,70,71,72,73,74,75,76,77,78,79,80,
81]. This gauge symmetry produces textures that are linked
to additional flavor-changing neutral currents that, in prin-
ciple, could be measured at future colliders. There are
many proposed models with flavor gauge symmetries be-
yond the SM such as SO(12), SU(8), 331, U(1) [82,83,84,
85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102],
among others, that attempt to explain the flavor prob-
lem and the SM mass hierarchy. Alternative mechanisms
for generating textures are via additional discrete global
groups, i.e., A4, ∆27, Z2, S3, etc. [50,51,52,53,54,55,56,
57,58,59,60,61,62,63,64,65,66]. An interesting way to ex-
plain the SM mass hierarchy is to introduce exotic quarks
with ordinary charges that mix with the ordinary ones
in the SM, producing small masses through the seesaw
mechanism [103].

An important open problem in particle physics is the
strong CP violation associated with the abelian symme-
try U(1)A [104,105,106,107], which is restricted by con-
straints on the electric dipole moment [108,109,110] of
the neutron that set limits on the θ parameter of the or-
der of 10−10 [111,112]. By introducing a global chiral
symmetry or Peccei Quinn symmetry, this fine-tuning can
be explained. But breaking this global symmetry implies
the existence of a Goldstone boson, This field is known as
axion and there are several models in which the axion is
invisible [113,114,115,116,117,118,119]. From cosmologi-
cal considerations the axion decay constant fa must be of
the order of 107−1017 GeV. On the other hand, the axion
acquires a non-zero mass due to mixing with the π0 and
η mesons, and takes a mass given by [111,120]

ma =

√
mumd

mu +md

mπfπ
fa

, (1)

where mπ , fπ denote the mass and decay constant of
the pion, and mu and md the masses of the up and down
quarks, respectively; by this mixing, the axion decays into
two photons. Axion could also be a dark matter can-
didate for values of the decay constant fa greater than
1010 GeV, where the different axion field production mech-
anisms are [121,122,123]: misalignment, global string and
domain wall decays, etc, generating relic densities of the
order of 0.12. Experiments designed to study K± → π±νν̄
decays are being reinterpreted to study flavor-changing
decays through axions of the form K± → π±a. Similarly,
flavor-changing decays in the bottom sector are studied.
On the other hand, the effective coupling of the axion to
photons is excluded by low energy experiments and must
be less than 10−11.

The purpose of our work is to use the PQ symme-
try to generate realistic mass textures that allow us to
explain the quark masses and the CKM mixing matrix

of the standard model and simultaneously the strong CP
problem. The idea of linking the PQ symmetry with the
flavor problem was proposed in [124], and in later litera-
ture [125,119,126]. Recently, there has been renewed in-
terest in this direction [127,128,129,130,131,132,133,134,
135,136,137,138,139,140,141]. We impose a PQ symme-
try on the SM, which can generate mass textures that
reproduce the masses of the Standard Model quarks for
Yukawa couplings close to unity. To obtain this result, a
sector of multihiggs is needed in such a way that the hi-
erarchy problem is reduced to defining the VEVs of the
neutral components of the scalar doublets.

This work is organized as follows: In section 2 we will
summarize some results of the literature on five-zero tex-
tures, in section 3 we carry out an analysis of the PQ
charges necessary to generate the textures of the quark
mass matrices, in this section, we also propose a natu-
ral way to normalize the PQ charges. In section 5 we
will obtain the values of the vacuum expectation values
VEV of the Higgs doublets to reproduce the masses of the
quarks, in this section, we also determine the values of the
Yukawa couplings and the minimum number of Higgs dou-
blets necessary to generate the texture of the quark masses
as shown in the Appendix A. In section 4 we show the
most general Lagrangian for the axion, and we calculate
the masses of the scalar fields for typical values of scalar
potential couplings. In section 6 we show the strongest
constraints on the parameter space of the model. Finally
in section 7 we present our the conclusions.

2 The five texture-zero mass matrices

One of the motivations to study the texture zeros in the
Standard Model (SM) and its extensions, is to simplify as
much as possible the number of free parameters present
in these models. The Yukawa Lagrangian, which is the re-
sponsible to give mass to the SM fermions after the spon-
taneous breaking of the electroweak symmetry SU(2)L ⊗
U(1)X → U(1)EM , has 36 free parameters in the quark
sector, enough to reproduce the experimental data in the
literature, i.e., the 10 physical quantities in the quark sec-
tor (6 quark masses, 3 mixing angles and the CP vio-
lation phase of the CKM matrix). Without a Model to
make predictions, discrete symmetries can be used to pro-
hibit some components in the Yukawa matrix by gener-
ating the so-called texture zeros in the mass matrix. In
many works instead of proposing a discrete symmetry,
texture zeros are proposed as practical alternatives. This
approach has as advantage that it is possible to choose
the optimal mass matrix for analytical treatment of the
problem, while simultaneously manage to adjust the mix-
ing angles and quark masses. In the literature there are
many proposed five-zero textures for the SM quark mass
matrices [142,143,27,144,145,146] 1. Several of these tex-
tures successfully reproduce the experimentally measured

1 The six-zero textures have already been ruled out because
their predictions are outside the allowed experimental ranges.
For a more detailed discussion see the references cited above.
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physical quantities. We chose the following five-zero tex-
ture because it gets a good fit for the quark masses and
mixing parameters [39,147,148]:

MU =

 0 0 Cu
0 Au Bu
C∗
u B

∗
u Du

 ,

MD =

 0 Cd 0
C∗
d 0 Bd
0 B∗

d Ad

 ,

(2)

where MU and MD are the mass matrices for the up-type
and down-type quarks, respectively. Due to the mass ma-
trices are Hermitian, the off diagonal matrix elements are
not independent, hence, the number of texture zeros in
both matrices sum five. The hermitian mass matrices has
been widely employed by several authors [149,26,143,145,
150,36,151,29]; however, the stability of this hypothesis
under radiative corrections has been poorly studied. The
stability of the texture-zeros under radiative corrections
is guaranteed by the PQ symmetry; however, the stability
of the Hermitian hypothesis deserves a separate study as
it is pointed out in reference [149]. In such a reference,
the authors concluded that the studied texture zeros of
Mu and Md are essentially stable against the evolution of
energy scales in an analytical way by using the one-loop
renormalization-group equations. By using a WBT [39,
28,29] it is possible to remove the phases in MD to be
absorbed by MU , i.e., the phases in Bd and Cd are ab-
sorbed in Bu and Cu, so that the mass matrices (2) can
be rewritten as:

MU =

 0 0 |Cu|eiϕCu
0 Au |Bu|eiϕBu

|Cu|e−iϕCu |Bu|e−iϕBu Du

 ,

MD =

 0 |Cd| 0
|Cd| 0 |Bd|
0 |Bd| Ad

 ,

(3)

where ϕBu and ϕCu are the respective phases of the com-
plex entries Bu and Cu. Since the trace and the determi-
nant of a matrix are invariant under the diagonalization
process, we can compare these invariants for the mass ma-
trices (3) with the corresponding expressions in the mass
basis where these matrices are diagonal, in such a way
that we can write down the free parameters of MU and
MD in terms of the quark masses.

Du = mu −mc +mt −Au, (4a)

|Bu| =

√
(Au −mu)(Au +mc)(mt −Au)

Au
, (4b)

|Cu| =
√
mumcmt

Au
, (4c)

Ad = md −ms +mb, (4d)

|Bd| =

√
(mb −ms)(md +mb)(ms −md)

md −ms +mb
, (4e)

|Cd| =
√

mdmsmb

md −ms +mb
. (4f)

For reasons of convenience we have imposed that the eigen-
values of the mass matrices for the second generation take
the negative values −mc and −ms. Au is left as a free pa-
rameter and its value, determined by the hierarchy of the
quark masses, must be in the following interval:

mu ≤ Au ≤ mt. (5)

The exact analytical diagonalization mass matrices in Eq. (3)
are shown in Appendix C.

3 Textures, PQ symmetry and the minimal
particle content

The five-texture zeros present in the mass matrices (2)
can be generated through a PQ symmetry U(1)PQ on the
Yukawa interaction terms between the SM fermions and
the scalar doublets Φα in the model [128,103,152]. We
also included a heavy neutral quark Q, and two scalar
singlets S1 and S2; the heavy quark is required to avoid
the FCNC constraints while keeping the QCD anomaly
at a finite value, as it will be explained below. The scalar
singlet S1 is necessary to break the PQ symmetry down
at a given high energy scale ΛPQ (In principle, S2 also
breaks the PQ symmetry; however; the purpose of S2 is
to give mass to the heavy quark, S1 cannot give mass
to the heavy quark due to its PQ charge). The Leading
Order (LO) Lagrangian for these fields is given by [153]:

LLO ⊃ (DµΦ
α)†DµΦα +

∑
ψ

iψ̄γµDµψ +

2∑
i=1

(DµSi)
†DµSi

−

(
q̄Liy

Dα
ij ΦαdRj + q̄Liy

Uα
ij Φ̃

αuRj

+ ℓ̄Liy
Eα
ij ΦαeRj + ℓ̄Liy

Nα
ij Φ̃ανRj + h.c

)
+(λQQ̄RQLS2 + h.c)− V (Φ, S1, S2), (6)

As it is shown in the Appendix A, the minimum num-
ber of Higgs doublets necessary to generate the texture of
the quark masses is four, hence α = 1, 2, 3, 4. In this ex-
pression i, j are family indices (there is an implicit sum
over repeated indices), the superindex U refers to up-
type quarks (the same is true for the super indices D,
E, N which refer to down-type quark, electron-like and
neutrino-like fermions, respectively) and Dµ = ∂µ + iΓµ
is the covariant derivative in the SM. V (Φ, S1, S2) is the
scalar potential which is shown in the Appendix E. In
Eq. (6) ψ stands for the standard model fermion fields
plus the heavy quark Q. As it is shown in Table 2 the PQ
charges of the heavy quark can be chosen in such a way
that only the interaction with the scalar singlet S2 is al-
lowed. In our approach we assign chargesQPQ to the quark
sector particles for the left-handed doublets (qL): xqi , up-
type right-handed singlets (uR): xui and down-type right-
handed singlets (dR): xdi for each family (i = 1, 2, 3), for
the scalar doublets, xϕα (α = 1, 2, 3, 4) and for the scalar
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singlets x
S1,2

. For the time being we only consider the
quark sector but a similar analysis can be done in the
lepton sector [154]. To forbid a given entry in the quark
mass matrix, the corresponding sum of the PQ charges
for the Yukawa interaction terms must be different from
zero, i.e., (−xqi + xuj − xϕα) ̸= 0, so that we can obtain
texture-zeros by imposing the following conditions:

MU =


0 0 x

0 x x

x x x

 −→


SU11 ̸= 0 SU12 ̸= 0 SU13 = 0

SU21 ̸= 0 SU22 = 0 SU23 = 0

SU31 = 0 SU32 = 0 SU33 = 0

 ,

MD =


0 x 0

x 0 x

0 x x

 −→


SD11 ̸= 0 SD12 = 0 SD13 ̸= 0

SD21 = 0 SD22 ̸= 0 SD23 = 0

SD31 ̸= 0 SD32 = 0 SD33 = 0

 , (7)

where

SUij =(−xqi + xuj − xϕα),

SDij =(−xqi + xdj + xϕα). (8)

In the matrix elements of the Eq. (7) every equality must
be satisfied only by one of the Higgs doublets, so in prin-
ciple, we have 11 equations. The inequalities must be sat-
isfied by all the Higgs charges xϕα therefore we have 7× 4
inequalities. We will use the parametrization shown in the
Tables 1 and 2. The scalar singlets, S1,2, acquire a vac-
uum expectation value at very high energies, where the

PQ symmetry is broken. Higgs doublets Φα adquire VEVs
around the electroweak scale. Due to the particular choice
of the PQ charge for the scalar singlet S1 (with a VEV of
order 106 GeV), trilinear terms, coupling the scalar singlet
S1 to the scalar doublets Φα, are allowed in the scalar po-
tential V (Φ, S1, S1) (see Appendix E), which are useful to
have a spectrum of heavy scalar doublets above the TeVs.
The scalar masses are above the searches for heavy-neutral
Higgs bosons for the typical benchmark models reported
by ATLAS and CMS collaborations [155].

The scalar potential V (ϕα, S1, S2) is invariant under
the symmetry S2 −→ S†

2 (which is equivalent to a Z2

symmetry), but this symmetry is broken by the interac-
tion term λQQ̄RQLS2 + h.c.. In fact, from this interac-
tion, it is also possible to generate, at one loop, a mass
term for the CP-odd field 1

2

(
mζS2

)2
SB
ζ2S2

in the effec-
tive Weinberg-Coleman potential (where ζS2

is the imag-
inary part of S2) From this interaction, there is also a
self-energy correction for CP-even fields, but it comes in
with an opposite sign, so these corrections softly break
the Z2 symmetry. As a consequence of this, ζS2

acquires
a mass in the broken phase [156,157,158,159,160,161].
From Eq. (83) of Appendix E it is possible to obtain
the decay of ImS2 = ζS2 in two axions which depends
on the parameter λS1S2 , ζS2 can also decay in in two SM
Higgs bosons, from the term

∑
i λiS2

Φ†
iΦiS

∗
2S2, therefore,

their interactions are not well constrained by colliders, the
impact on the parameter space of our model from the
cosmological signatures of this scalar is beyond the pur-
pose of the present work and deserves a dedicated studio.

Particles Spin SU(3)C SU(2)L U(1)Y U(1)PQ QPQ(i = 1) QPQ(i = 2) QPQ(i = 3)
qLi 1/2 3 2 1/6 xqi −2s1 + 2s2 + α −s1 + s2 + α α
uRi 1/2 3 1 2/3 xui s1 + α s2 + α −s1 + 2s2 + α
dRi 1/2 3 1 -1/3 xdi 2s1 − 3s2 + α s1 − 2s2 + α −s2 + α

Table 1: The columns 6-8 are the PQ (QPQ) charges for the SM quarks in each family. The subindex i = 1, 2, 3 stands
for the family number in the interaction basis. The parameters s1, s2 and α are reals, with s1 ̸= s2.

Particles Spin SU(3)C SU(2)L U(1)Y U(1)PQ QPQ
Φ1 0 1 2 1/2 xϕ1

s1 ∈ reals
Φ2 0 1 2 1/2 xϕ2

s2 ∈ reals
Φ3 0 1 2 1/2 xϕ3

−s1 + 2s2
Φ4 0 1 2 1/2 xϕ4

−3s1 + 4s2
S1 0 1 1 0 x

S1
x
S1

= s1 − s2 ̸= 0
S2 0 1 1 0 x

S2
x
S2

= xQR − xQL ̸= 0
QL 1/2 3 0 0 xQL xQL ∈ reals
QR 1/2 3 0 0 xQR xQR ∈ reals

Table 2: Beyond SM scalar and fermion fields and their respective PQ charges. The parameters s1, s2 are reals, with
s1 ̸= s2.
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As it is usual in the PQ formalism, we are interested in
those charges for which the QCD anomaly N is different
from zero, where

N = 2

3∑
i

xqi −
3∑
i

xui −
3∑
i

xdi +AQ, (9)

for this reason, in the literature N is used as the nor-
malization of the Peccei-Quinn (PQ) charges. In order to
generate the proper normalization to the charges in the
Tables 1 and 2, for an SM fermion ψ the most general
PQ charges that reproduce the texture in Ref. [39] are
given by the parametrization

QPQ(ŝ1, ϵ,N, α)(ψ) =
N

9

(
ŝ1Q

s1
PQ(ψ) + (ϵ+ ŝ1)Q

s2
PQ(ψ)

)
+αQVPQ(ψ). (10)

In this expression, Qs1,s2,VPQ (ψ) are PQ charges, whose ex-
plicit expressions are given in the Table 3, where N =
xQL − xQR + s2 − s1, ϵ = (1 − AQ/N), ŝ1,2 = 9

N s1,2
(are arbitrary real numbers such that ŝ1 ̸= ŝ2) and AQ =
xQL−xQR is the contribution to the anomaly of the heavy
quark Q, which is a singlet under the electroweak gauge
group, with left (right)-handed Peccei-Quinn charges de-
noted by xQL(xQR). This parametrization was obtained
from Tables 1 and 2, by normalizing the PQ charges in
such a way that the anomaly of SU(3)C is N for any
real value of the parameters ŝ1, ŝ2, α, xQL and xQR . Be-
cause xQL and xQR always appear in the combination
xQL−xQR = N(1−ϵ) and ŝ2 = ŝ1+ϵ, it is more convenient
to use the set of parameters ŝ1, ϵ, N and α. For the FCNC
processes considered in the present work, the phenomeno-
logical couplings are proportional to differences between
the PQ charges of down-type quarks, so that only ϵ and
N are relevant for these observables. To solve the strong
CP problem N ̸= 0 and to generate the texture-zeros in
the mass matrices it is necessary to keep ϵ ̸= 0. It is im-
portant to note that due to the exotic heavy quark Q, It
is possible to choose small PQ charges for SM fermions
with a small contribution to the QCD anomaly, while the
QCD anomaly remains finite (this condition is necessary
to solve the strong CP problem), small couplings are also
important to avoid collider constraints.

Particles QVPQ Qs1PQ Qs2PQ
qLi 1 1 1 −2 −1 0 2 1 0
uRi 1 1 1 1 0 −1 0 1 2
dRi 1 1 1 2 1 0 −3 −2 −1

Family 1 2 3 1 2 3 1 2 3

Table 3: The three columns in each slot are the Peccei-
Quinn charges xψi in each family. PQ charges are shown
for the SM left-handed quarks xqi , the right-handed up-
type xui and down-type xdi quarks for the three families
i = 1, 2, 3.

The QCD anomaly is also given by N = AQ/(1 − ϵ),
this parametrization is quite convenient since by fixing
N and fa for FCNC observables (for which α does not
matter) in Eq. (10) we can vary ŝ1 and ϵ for a fixed ΛPQ =
faN , in such a way that the parameter space is naturally
reduced to two dimensions.

If we want to solve the domain-wall problem is nec-
essary to calculate the QCD anomaly in a normalization
such that the minimum magnitude of the non-vanishing
PQ charges of the scalar fields and the quark condensates
is 1 [162]. The anomaly is given byN = xQL−xQR+s2−s1,
by choosing s2 = −1, s1 = 0 and α = 0. In this case
the charge of the singlet scalar S1 is s1 − s2 = 1. In
this normalization, we can identify N with NDW [162]
in such a way that N = NDW = 1, which is equiva-
lent to ϵ = (xQL − xQR)/N = 2. There are other ways
of choosing the parameters which also solve the problem.
The DW problem can be disposed of by introducing an
explicit breaking of the PQ symmetry so that the degen-
eracy between the different vacua is removed and there is
a unique minimum of the potential [163].

4 The effective lagrangian

The most important phenomenological consequence of non-
universal PQ charges is the presence of FCNC. To deter-
mine the restrictions coming from the FCNC we start by
writing the most general effective Lagrangian as [164,165]:

LNLO = +caΦαOaΦα + c1
α1

8πOB

+c2
α2

8πOW + c3
α3

8πOG, (11)

caΦα and c1,2,3 are Wilson coefficients; α1,2,3 =
g21,2,3
4π where

the g1,2,3 are the coupling strengths of the electroweak in-
teraction in the interaction basis; qLi, dRi and uRi, are the
left-handed quark doublet, right-handed down-type and
right-handed up-type quark fields, respectively; ℓLi, eRi
and νRi are the left-handed lepton doublet, right-handed
charged lepton, and right-handed neutrino fields, respec-
tively. ψ stands for the SM fermion fields and the effective
operators are given by

OaΦα =i
∂µa

Λ

(
(DµΦ

α)†Φα − Φα†(DµΦ
α)
)
,

OB =− a

Λ
BµνB̃

µν ,

OW =− a

Λ
W a
µνW̃

aµν ,

OG =− a

Λ
GaµνG̃

aµν , (12)

where B, W a and Ga correspond to the gauge fields as-
sociated with the SM gauge groups U(1)Y , SU(2)L and
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SU(3)C , respectively. Redefining the fields [164]

Φα −→ ei
x
Φα
Λ aΦα,

ψL −→ ei
xψL
Λ aψL,

ψR −→ ei
xψR
Λ aψR,

Si −→ ei
x
Si
Λ aSi, (13)

where xΦα and xψαL,R are the PQ charges for the Higgs
doublets and the SM fermions, respectively. By keeping
the leading order LO terms in Λ−1, the Lagrangian Eq. (11)
can be written as [164,153]:

LNLO −→ LNLO +∆LNLO, (14)

where

∆LNLO = ∆LKΦ +∆LKψ +∆LYukawa

+∆L(Fµν) +∆LKS , (15)

with

∆LKΦ =ixΦα
∂µa

Λ

[
(DµΦ

α)†Φα − Φα†(DµΦ
α)
]
,

∆LKψ =
∂µa

2Λ

∑
ψ

(xψL − xψR)ψ̄γ
µγ5ψ − (xψL + xψR)ψ̄γ

µψ,

∆LYukawa =
ia

Λ
q̄Li

(
yDαij xdj − xqiy

Dα
ij + xΦαy

Dα
ij

)
ΦαdRj

+
ia

Λ
q̄Li

(
yUαij xuj − xqiy

Uα
ij − xΦαy

Uα
ij

)
Φ̃αuRj

∆LKS =ixSi
∂µa

Λ

[
(DµSi)

†Si − S†
i (DµSi)

]
,

and xqi , xui and xdi are the PQ charges for the i-th
family of the quark doublet, right-handed up-type and
the right-handed down-type, respectively. From Eq. (7) we
see that ∆LYukawa is zero, this is consistent with the ax-
ion shift symmetry which only allows derivative couplings
to the SM particles. The same is true for all terms with-
out derivatives of the fields. As it is shown in Appendix D
from∆LKΨ we obtain the flavour-violating derivative cou-
plings:

∆LKD =− ∂µad̄iγ
µ
(
gVafifj + γ5gAafifj

)
dj , (16)

where;

gV,Aadidj =
1

2faceff3
∆Dij
V,A, (17)

In this expression we made the substitution Λ = fac
eff
3 . As

shown in appendix D the axial and vector couplings are:

∆Dij
V,A = ∆Dij

RR (d)±∆Dij
LL (q), (18)

with∆Fij
LL (q) =

(
UDL xq U

D†
L

)ij
and∆Fij

RR (d) =
(
UDR xd U

D†
R

)ij
.

The field redefinitions (13) induce a modification of the
measure in the functional path integral whose effects can

be determined from the divergence of the axial-vector cur-
rent: JPQ5

µ =
∑
ψ(xψL − xψR)ψ̄γµγ

5ψ [166],

∂µJPQ5
µ =

∑
ψ

2imψ(xψL − xψR)ψ̄γ
5ψ

−
∑
ψ

(xψL − xψR)
α1Y

2(ψ)

2π
BµνB̃

µν

−
∑

SU(2)L doublets

xψL
α2

4π
W a
µνW̃

aµν

−
∑

SU(3) triplets

(xψL − xψR)
α3

4π
GaµνG̃

aµν , (19)

where the hypercharge is normalized by Q = T3L + Y .
The Eq. (19) is an on-shell relation; and the derivative is
associated with the momentum of an on-shell axion, hence,
there is internal consistency. By replacing this result in
LKψ = ∂µa

2Λ J
PQ5
µ = − a

2Λ∂
µJPQ5

µ we obtain a modification
of the leading order Wilson coefficients [167]

c1 −→ c1 −
1

3
Σq +

8

3
Σu+

2

3
Σd−Σℓ+ 2Σe,

c2 −→ c2 − 3Σq −Σℓ,

c3 −→ c3 − 2Σq +Σu+Σd−AQ, (20)

where Σq ≡ xq1 + xq2 + xq3 is the sum of the PQ charges
of the three families, and AQ is the contribution of the
heavy quark to the color anomaly which was defined in
Eqs. (10) and (9). From these expressions we obtain for
the SM fermions

∆L(Fµν) =
a

Λ

α1

8π
BµνB̃

µν

(
1

3
Σq − 8

3
Σu− 2

3
Σd+Σℓ− 2Σe

)
+
a

Λ

α2

8π
W a
µνW̃

aµν (3Σq +Σℓ)

+
a

Λ

α3

8π
GaµνG̃

aµν (2Σq −Σu−Σd+AQ) . (21)

We define ceff3 = c3 − 2Σq + Σu + Σd − AQ = −N . In
our case, there are no operators of dimension 5 in the La-
grangian before redefining the fields, i.e., ci = 0. It is usual
to define Λ = fac

eff
3 to absorb the factor ceff3 in the nor-

malization of the PQ charges 2. From now on we assume
that all the PQ charges are normalized in this way, so that
xψ stands for xψ/ceff3 and the effective scale is fa. For nor-
malized charges ceff3 = 1, we do not lose generality despite
writing the expressions in terms of fa.

5 Naturalness of Yukawa couplings

The previous texture analysis guarantees that the number
of free parameters in the mass matrices is enough to re-
produce the CKM matrix and the quark masses; as we will
show our solutions are flexible enough to set most Yukawa
couplings of order 1. As shown in the appendices, in order

2 Notice that ceff3 could be negative, however it does not rep-
resent a problem since the observables always depend on |fa|2.
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to generate the texture of the mass matrices with a PQ
symmetry, it is necessary to have at least four Higgs dou-
blets. The chosen PQ charges are enough to generate the
texture-zeros; but it does not guarantee Hermitian mass
matrices, it is true that non-Hermitian mass matrices are
the usual ones, however, in our approach we prefer Her-
mitian mass matrices to gain some analytical advantages.
In order to have self-adjoint matrices we impose the fol-
lowing restrictions on the Yukawa couplings in Eq. (3):
yU1
31 = yU1∗

13 , yU2
32 = yU2∗

23 , yD4
21 = yD4∗

12 , yD3
32 = yD3∗

23 , in ad-
dition, we require that the diagonal elements yU1

22 , y
U3
33 and

yD2
33 must be real numbers.

The up and down quark mass matrices in the interac-
tion basis are:

MU = v̂αy
Uα
ij =

 0 0 yU1
13 v̂1

0 yU1
22 v̂1 yU2

23 v̂2

yU1∗

13 v̂1 y
U2∗

23 v̂2 y
U3
33 v̂3

 , (22)

MD = v̂αy
Dα
ij =

 0 |yD4
12 |v̂4 0

|yD4
12 |v̂4 0 |yD3

23 |v̂3
0 |yD3

23 |v̂3 yD2
33 v̂2

 , (23)

where we define the expectation values v̂i = vi/
√
2. Here

we have implicitly defined the arrays yDαij which will be
needed in the calculation of the FCNC. Taking into ac-
count the expressions (4), it is possible to establish the fol-
lowing relations between the masses of the up-type quarks
and the VEVs

v̂1 =

(
mumcmt

|yU1
13 |2 yU1

22

)1/3

, (24)

v̂2 =

√
(v̂1 yU1

22 −mu)(v̂1 yU1
22 +mc)(mt − v̂1yU1

22 )

v̂1 yU1
22 |yU2

23 |2
, (25)

v̂3 =
mu −mc +mt − v̂1 y

U1
22

yU3
33

. (26)

In an identical way for the down sector we can set the
following relations:

v̂4 =

(
mdmsmb

|yD4
12 |2 (md −ms +mb)

)1/2

, (27)

v̂3 =

√
(ms −md)(md +mb)(mb −ms)

(md −ms +mb) |yD3
23 |2

, (28)

v̂2 =
md −ms +mb

yD2
33

. (29)

By using current quark masses at the Z pole (Table 5), i.e.,
mu = 1.27 MeV, mc = 0.633 GeV and mt = 171.3 GeV,
from Eq. (24) we find the following approximate values
for the vacuum expectation in terms of the masses and
the Yukawas:

v̂1y
U1
22 ∼

∣∣∣∣yU1
22

yU1
13

∣∣∣∣2/3 (mumcmt)
1/3 =

∣∣∣∣yU1
22

yU1
13

∣∣∣∣2/3 0.516GeV.

(30)

From the bottom current mass at the Z pole we can obtain
v̂2 by using the Eq. (29)

v̂2 ∼ mb

yD2
33

=
2.91GeV
yD2
33

. (31)

Using the constraint (5) and the numerical inputs in Ta-
ble 5 in Appendix C, we can establish the more restrictive
condition mu ≪ yU1

22 v̂1 ≪ mt. The consistency between
the equations (25) and (31) requires the following relation∣∣∣∣ yU2

23

yD2
33

∣∣∣∣ =
√(

mc + v̂1yU1
22

)
mt

m2
b

∼ 6.9, (32)

where we are assuming that v̂1yU1
22 ∼ 2.7mc (see Table 5).

Under similar assumptions it is also possible to get v̂3 from
the equation (26)

v̂3 ∼ mt

yU3
33

. (33)

The consistency of this result with the value for v̂3 in
Eq. (28) implies∣∣∣∣yD3

23

yU3
33

∣∣∣∣ =√msmb

m2
t

= 2.4× 10−3, (34)

where, in this case, we took ms = 56 MeV at the Z
pole. Due to Eq. (33) all the Yukawa couplings have a
strong dependency on yU3

33 since v̂3 is the leading term in
v =

√
(v21 + v22 + v23 + v24). So, by setting various Yukawa

couplings close to 1 (except yU2
23 , yD3

23 and yU1
13 ) we obtain:

v̂1 =1.71GeV, v̂2 = 2.91GeV, v̂3 = 174.085GeV. (35)

Finally, we can obtain v̂4 from Eq. (27)

v̂4 ∼
√
mdms

|yD4
12 |

. (36)

By setting yU3
33 ∼ 0.983818 it is possible to adjust yD4

12 ∼ 1
through the relation (v21+v

2
2+v

2
3+v

2
4) = (246.24GeV)2 =

v2, which for md = 3.15 MeV implies

v̂4 = 13.3MeV. (37)

We will adjust the scalar potential V (Φ, S1, S2) so that,
at the minimum, the VEVs of the scalar doublets are pre-
cisely those required to generate the SM quark masses. We
also propose rotation matrices to implement the Georgi-
Nanopoulus formalism for an arbitrary number of scalar
doublets.

6 Low energy constraints

Since our model has non-universal PQ charges, in addi-
tion to the usual constraints for the axion-photon cou-
pling, a tree level analysis of the Flavor Changing neutral
currents is needed. As it is mentioned in reference [163]
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Figure 1: Tree level diagram contribution to the FCNC
processes K± → π±a and B± → K∗±a.

the strongest bounds on flavor violating axion couplings
to quarks come from meson decays into final states con-
taining invisible particles. Currently, the K± → π±a de-
cays provide the tightest limits (E949 and E787 Experi-
ments) for the axion mass [163]. Other important restric-
tions apply on axion-photon couplings [163] but require
lepton couplings which we are not considering in this work,
any way, in our case these bounds do not represent the
strongest constraints [163]. As shown in reference [163] for
the decays K± → π±a and B → K∗a the tree level FCNC
come from the term ∆LKψ in the Lagrangian (15). In our
approach, we assume that these terms are absent in the
original Lagrangian, i.e., ci = 0, so these terms come from
the redefinition of the fields (13) and are therefore propor-
tional to the PQ charges. In Appendix D, it is shown that
the decay widths of pseudoscalar K±(B) mesons into an
axion and a charged pion (vector K∗) are given by

Γ (K± → π±a) =
m3
K

16π

(
1− m2

π

m2
K

)2

λ
1/2
Kπaf

2
0 (m

2
a)|gVads|2,

Γ (B → K∗a) =
m3
B

16π
λ
3/2
BK∗aA

2
0(m

2
a)|gAasb|2, (38)

where λMma =
(
1− (ma+m)2

M2

)(
1− (ma−m)2

M2

)
and

gV,Aadidj =
1

2faceff3
∆Dij
V,A, (39)

where:
∆Dij
V,A = ∆Dij

RR (d)±∆Dij
LL (q), (40)

with∆Fij
LL (q) =

(
UDL xq U

D†
L

)ij
and∆Fij

RR (d) =
(
UDR xd U

D†
R

)ij
.

In the Eq. (39) we normalize the charges with ceff3 as it is
explained in the last paragraph of section 4. For ma ≪
1 MeV, the form factor is f0(m2

a) ≈ 1 [172] for the decay
K± → π±a. On the other side, from reference [173] we ob-
tain: f0(m2

a) ≈ 0.33 for B± → K±a, f0(m2
a) ≈ 0.258 for

B± → π±a, and for decays with a vector meson in the final
state A0(m

2
a) ≈ 0.374 for B± → K∗±a. The constraints

on the axion couplings and the decay constant fa can be
obtained from rare semileptonic meson decays M → mν̄ν,
where M stands for K±, B± and m = π±,K±,K∗, ρ.
These constraints are summarized in Table 4. Figure 2
shows the decay constant fa as a function of ϵ. For our
PQ charges, the FCNC from the processes B± → π±a
and B± → K∗±a are strongly suppressed, in such a way

Collaboration Upper bound

E949+E787 [168,169] B
(
K+ → π+a

)
< 0.73× 10−10

CLEO [170] B
(
B± → π±a

)
< 4.9× 10−5

CLEO [170] B
(
B± → K±a

)
< 4.9× 10−5

BELLE [171] B
(
B± → ρ±a

)
< 21.3× 10−5

BELLE [171] B
(
B± → K∗±a

)
< 4.0× 10−5

(41)

Table 4: These inequalities come from the window for new
physics in the branching ratio uncertainty of the meson
decay in a pair ν̄ν.

Figure 2: Allowed regions for semileptonic meson decays.
We use the relation (1) between the axion mass and the
decay constant fa.

that these constraints are satisfied trivially, hence their
allowed regions are not shown in Figure 2.

In general, it is not guaranteed that the eigenstates of
mass correspond to the states obtained from the Georgi
Rotation, as it is argued in the reference [174] it is only
necessary that the state corresponding to the Higgs of the
SM coincides with one of the mass eigenstates of the neu-
tral scalars to obtain an alignment that allows us applying
the results of the formalism of Georgi [175]. In our case,
we have numerically verified the alignment criteria in ref-
erence [174]. The origin of the alignment in our model
is a consequence of the large suppression of the VEVs of
the scalar doublets vi, with i = 1, 2, 4, respect to v3, the
VEV of Φ3. To some extent, this alignment avoids FCNC
involving the SM Higgs boson; however, after alignment,
there are other sources of FCNC associated with the ad-
ditional scalar doublets, which is not possible to avoid by
any means.
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New sources of FCNC come from the Higgs sector, as
can be seen in Eq. (64) in appendix B, where the term
−d̄iLH0

βY
Dβ
ij djR− ūiLH

0∗
β Y

Uβ
ij ujR has FCNC for β = 2, 3, 4,

however, for β = 1 Y U1
ij is diagonal, H0∗

1 corresponds to
the SM Higgs field, hence, there are no terms with flavor-
changing neutral currents involving the SM Higgs. For
β = 2, 3, 4 the decay B → K∗Hβ with a neutral scalar
in the final state has no phase space, however, the FCNC
process B → K∗Hβ → K∗ℓ−ℓ+ , where the scalar is an
intermediate boson, is possible, however, in this case, the
scalar width is suppressed by a factor 1/M4

β (for β > 1

the masses are above 1TeV) and therefore this observable
does not represent the strongest constraint. This justi-
fies why in the literature the width of the FCNC process
π± → K±a (Eq. 39) represents the strongest constraint
for a light axion. The PDG 2022 [155], set mass limits for
heavy neutral Higgs bosons in the MSSM (which is a usual
benchmark model for models with additional Higgs dou-
blets) M2 > 389 GeV for tanβ = 10. The constraints are
stronger for larger tanβ; in our model, the tanβ values
are of order one so that in all the cases the scalar masses
of our model are above these lower limits.

From astrophysical considerations are the bounds from
black holes superradiance and the SN 1987A bound on the
neutron electric dipole moment, which can be combined in
such a way that they constrain the axion decay constant
in the range [163] (see Figure 2) : 0.8 × 106GeV ≤ fa ≤
2.8× 1017GeV.

7 Summary and conclusions

In this work we have proposed a PQ symmetry that gives
rise to quark mass matrices with five texture-zeros. This
texture (2) can adjust in a non-trivial way the six masses
of the quarks and the three CKM mixing angles and the
CP violating phase. The Hermitian quark mass matrices,
up-type MU and down-type MD, have 18 free parame-
ters, six of them are phases and 12 are real parameters.
As it is well known in the literature, three of these real
parameters can be made equal to zero through a WBT
without any physical consequence [27,28,29]. Five of these
phases can be reabsorbed in the fermion fields [176,177]
in such a way that we end with nine real parameters and
one phase to explain the six quark masses, the three mix-
ing angles, and the CP-violating phase, achieving parity
between the number of free parameters and experimental
measurements.

By imposing two texture zeros (in addition to the three
zeros obtained from the WBT) there are more experimen-
tal constraints than free parameters, this feature elimi-
nates a large number of possible textures for the mass
matrices. In Appendix A we showed that in order to gen-
erate the texture, Eq. (2), through a PQ symmetry, at
least four Higgs doublets are required. In Eq. (10) we pro-
posed a general parametrization for the PQ charges which
is consistent with the texture.

Since many observables are proportional to the PQ
charges normalized by the QCD anomaly, we included into

the particle content a heavy quark singlet under the SM
gauge electroweak gauge group SUL(2)× UY (1) but with
chiral charges under the PQ symmetry. The PQ charges of
this heavy quark are responsible for maintaining N ̸= 0,
while we make the PQ charges of the SM quarks arbitrarily
close to zero.

To generate the texture zeros of the mass matrices and
simultaneously to solve the strong CP problem it is nec-
essary to keep ϵ and N different from zero in Eq. (10).
In our case, the FCNC observables do not depend on the
parameters α and ŝ1 (see Table 2 for definitions), hence,
the axion decay constant fa (or the axion mass ma) and
ϵ were the only relevant parameters in our analysis.

In order to write down the quark mass matrices in
the proper basis, in Appendix B we generalize the Georgi
rotation in the two Higgs doublet formalism to rotate an
arbitrary number of Higgs doublets to a basis where only
one Higgs doublet acquires a vacuum expectation value.

By defining almost all the Yukawas close to 1, it was
possible to determine the vacuum expectation values of
the Higgs doublets from the experimental value of the
quark masses and the CKM mixing matrix, this choice
obeys the criteria of naturalness and is very convenient to
understand the origin of the mass hierarchies in the SM.

Since in our model the PQ charges are non-universal
there are FCNC at the tree level. We calculated the tree
level FCNC couplings from the effective interaction La-
grangian between the kinetic term of the quarks and the
axion, these couplings are well known in the literature [163].
In Appendix D we calculated the decay width for the de-
cay of a pseudoscalar meson into a pseudoscalar (or vec-
tor) meson plus an axion. This result let us determine the
region of the parameter space allowed by the experimental
constraints Fig. 2.

Our model is flexible enough to accommodate possible
experimental anomalies, while simultaneously is a useful
approach to answer several issues in flavor physics. For
future work, it is necessary to extend the PQ symmetry
to leptons. Although it is true that in the literature there
are textures that can adjust the parameters of the lepton
sector [178,179,180,181,182,154], these textures are dif-
ferent from those used with quarks [27], however, as will
be shown elsewhere, it is possible to make the adjustment
without additional Higgs doublets.
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A The minimal content of Higgs doublets

The texture (42) can be obtained from a Peccei-Quinn
U(1)PQ symmetry, incorporating in the model a minimum
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of 4 Higgs doublets with charges xϕ.

MU =

 0 0 x
0 x x
x x x

 , MD =

 0 x 0
x 0 x
0 x x

 . (42)

The idea of the demonstration is: we first observe that in
terms of the charges xψ, each entry allowed in the array
MU must satisfy the relation:

SUij = −xqi + xuj − xϕα = 0, (43)

where xϕα represents the PQ chargue of the αth Higgs
that satisfies the equality in Eq. (43). By assuming two
quarks doublets qLi and qLj with identical PQ charges
xq and requiring SUik = −xqi + xuk − xϕα = 0 for any
k = 1, 2, 3, we also have SUjk = −xqj + xuk − xϕα = 0, for
the same k’s and the Higgs doublet ϕα (since xqi = xqj ).
This would lead to having two rows in the matrix MU

with an equivalent structure, that is to say, the allowed
and forbiden terms are the same, which contradicts the
structure of the matrix. Similarly, if two fields uRi, uRj
with i ̸= j, had equal charges, it would lead to an array
MU with a similar structure in two columns, which is not
present in (42); the same applies to the matrix MD, thus:

xqi ̸= xqj , xui ̸= xuj , xdi ̸= xdj , with i, j = 1, 2, 3.
(44)

From these inequalities and noting that in the third
column in MU all terms are allowed, we can conclude that

at least three Higgs doublets are required to reproduce
the texture-zeros of the matrix MU . Now it is necessary
to settle if three Higgs doublets are enough to simultane-
ously reproduce the matrix MU and MD in 42. The third
column in Mu implies the relations

SUi,3 = −xqi + xu3
− xϕα = 0, for each i = 1, 2, 3,

(45)

then xq1 = xu3
− xϕα = 0 and xq2 = xu3

− xϕα = 0.
Since xq1 ̸= xq2 these equations can not be simultaneously
valid for the same xϕα . The same is true for any pair xqi ,
xqj with i ̸= j, hence, the equalities Eq. (45) require a
minimum of three higgs doublets to reproduce the texture
of MU . The next step is to determine if the three chosen
Higgs doublets for MU are enough to generate the texture
of MD. For three Higgs doublets the texture (42) requires
7 × 3 = 21 inequalities associated with the forbidden en-
tries, i.e.,

SDij =− xqi + xdj + xϕα ̸= 0

SUij =− xqi + xuj − xϕα ̸= 0, α = 1, 2, 3. (46)

Now, without loss of generality, we can take the charge
of the singlet xu3 = 0, and from the equations (45) for
the couplings of uR3 we can identify the charges of the
doublets qL with the charges of the three Higgs fields, such
that: xqi = −xϕi . With this result we can put together the
equations (43) and the inequalities (46), in such a way that
the texture of the matrix MD can be written-down as 47:

SD =

xϕ1
+ xd1 + (xϕ)11 ̸= 0 xϕ1

+ xd2 + (xϕ)12 = 0 xϕ1
+ xd3 + (xϕ)13 ̸= 0

xϕ2 + xd1 + (xϕ)21 = 0 xϕ2 + xd2 + (xϕ)22 ̸= 0 xϕ2 + xd3 + (xϕ)23 = 0
xϕ3 + xd1 + (xϕ)31 ̸= 0 xϕ3 + xd2 + (xϕ)32 = 0 xϕ3 + xd3 + (xϕ)33 = 0

 , (47)

where the inequalities must be satisfied by any (xϕ)ij =
xϕk , with k = 1, 2, 3. For the equalities, it is enough if at
least one xϕi satisfies them. In Eq. (48) we analyze each
entry of SD21 and we obtain the following options for (xϕ)21:

(xϕ)21 =


xϕ1

→ SD11 = 0 if (xϕ)11 = xϕ2
(must be ̸= 0)

xϕ2
is a consistent solution

xϕ3 → SD13 = 0 if (xϕ)13 = xϕ2 (must be ̸= 0),

(48)

By the same way, the choice (xϕ)23 = xϕ1
in SD23 is not

consistent with the inequality SD13, and the choice (xϕ)23 =
xϕ2

due to SD21, implies xd3 = xd1 , which is forbidden
by Eq. (44), therefore the only option is (xϕ)23 = xϕ3

.
The proposed analysis allows defining in a unambiguous
way the fields (xϕ)ij in the equalities. Proceeding in an
identical way for the remaining ones, we get:

(xϕ)21 =xϕ2
, (xϕ)23 = xϕ3

, (xϕ)12 = xϕ3
,

(xϕ)32 =xϕ1
, (xϕ)33 = xϕ2

, (49)
By replacing these expressions in (47) SD reduces to 50:

SD =

xϕ1
+ xd1 + (xϕ)11 ̸= 0 xϕ1

+ xd2 + xϕ3
= 0 xϕ1

+ xd3 + (xϕ)13 ̸= 0
2xϕ2

+ xd1 = 0 xϕ2
+ xd2 + (xϕ)22 ̸= 0 xϕ2

+ xd3 + xϕ3
= 0

xϕ3
+ xd1 + (xϕ)31 ̸= 0 xϕ3

+ xd2 + xϕ1
= 0 xϕ3

+ xd3 + xϕ2
= 0

 . (50)

From this expression we obtain the relation:

SD21 − SD11 = 2xϕ2 − xϕ1 − (xϕ)11 ̸= 0, (51)
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since this must be true for all (xϕ)11 = xϕi , for i = 1 we
get:

2xϕ2 − xϕ3 − xϕ1 ̸= 0. (52)
We will use equation (52) shortly. By carrying out the

same analysis for SU (using the same conventions xu3
= 0

and −xqi = xϕi ) there are two options for this matrix, as
seen in 53:

SU(AB)
=

xϕ1 + xu1 − (xϕ)11 ̸= 0 xϕ1 + xu2 − (xϕ)12 ̸= 0 0
xϕ2 + xu1 − (xϕ)21 ̸= 0 xϕ2 + xu2 − xϕ

(13)
= 0 0

xϕ3 + xu1 − xϕ
(12)

= 0 xϕ3 + xu2 − xϕ
(21)

= 0 0

 ,

(53)
where subscript

(
2
1

)
indicates that either of the two val-

ues xϕ1
or xϕ2

are possible. The subscript
(
A
B

)
means that

all the up (down) options must be replaced simultaneously,
mixing between up and down options must be avoided.
From this matrix, i.e., SUA , we obtain (SUA )22 − SUA )32 =
2xϕ2 − xϕ3 − xϕ1 = 0, which is forbidden by (52), then,
the option SUA is not possible. For the option SUB we have

(SUB )22 − (SUB )32 = −2xϕ3 + xϕ2 + xϕ1 = 0, (54)

but, (SUB )11 − (SUB )31 = −2xϕ3
+ xϕ2

+ xϕ1
̸= 0 (where

we took (xϕ)11 = xϕ3 in SUB ) that violates the inequality
(54), therefore it is not possible to build the texture (42)
with just three Higgs doublets. By adding a Higgs doublet,
infinite solutions are presented thus demonstrating that a
minimum of four Higgs doublets are required to reproduce
the texture (42).

B The mass operator matrices

The most general Lagrangian for the interaction of four
Higgs doublets Φα with the quarks of the SM is given by

L = −q̄′iLΦαyDαij d′jR − q̄′iLΦ̃αy
Uα
ij u

′j
R + h.c, (55)

where a sum is assumed on repeated indices. Here i, j run
over 1, 2, 3 and α over 1, 2, 3, 4. The Higgs boson doublet
fields are parameterized as follows:

Φα =

(
ϕ+α

vα+hα+iηα√
2

)
, Φ̃α = iσ2Φ

∗
α. (56)

In a similar way as in the two Higgs doublet model [183] we
rotate the Higgs fields to the (generalized) Georgi basis,
i.e.,H1

H2

H3

H4

 = R1(β1)R2(β2)R3(β3)

Φ1

Φ2

Φ3

Φ4

 =: Hβ ≡ RβαΦα,

(57)

where the orthogonal matrices

R1(β1) =

 cosβ1 sinβ1 0 0
− sinβ1 cosβ1 0 0

0 0 1 0
0 0 0 1

 , (58a)

R2(β2) =

1 0 0 0
0 cosβ2 sinβ2 0
0 − sinβ2 cosβ2 0
0 0 0 1

 , (58b)

R3(β3) =

1 0 0 0
0 1 0 0
0 0 cosβ3 sinβ3
0 0 − sinβ3 cosβ3

 , (58c)

where tanβ1 =

√
v22+v

2
3+v

2
4

v1
, tanβ2 =

√
v23+v

2
4

v2
and tanβ3 =

v4
v3

. In these expressions Hβ = (H+
β , (H

0
β + iHodd

β )/
√
2)T .

This basis is chosen in such a way that only the neutral
component of H1 acquires a vacuum expectation value

⟨H0
1 ⟩ =

√
v21 + v22 + v23 + v24 ≡ v,

⟨H0
2 ⟩ = 0, ⟨H0

3 ⟩ = 0, ⟨H0
4 ⟩ = 0. (59)

In this way ΦαyFαij = yFαij R
T
αβRβγΦγ = YFβij Hβ , and F =

U,D; where we have defined

YFβij = Rβαy
Fα
ij . (60)

With these definitions equation (55) becomes

L = −q̄′iLHβYDβij d′jR − q̄′iLH̃βYUβij u′jR + h.c. (61)

It is necessary to rotate to the mass eigenstates of the
fermion mass, i.e.,

fL,R = UFL,Rf
′
L,R, (62)

where the diagonalization matrices UL,R are defined be-
low, in section C. From the Lagrangian for the charged
currents

LCC =− g√
2
ū′Liγ

µd′LiW
+ + h.c

=− g√
2
ūLiγ

µ (VCKM)ij dLjW
+ + h.c, (63)

it is possible to obtain the CKM mixing matrix VCKM =

UUL U
D†
L by rotating to the fermion mass eigenstates. In

particular, we are interested in the axial neutral current
coupling to the axion in the mass eigenstates

LH0 =− 1√
2
d̄′iLH

0
βY

Dβ
ij d′jR − 1√

2
ū′iLH

0
βY

Uβ
ij u′jR + h.c,

=− 1√
2
d̄iLH

0
βY

Dβ
ij djR − 1√

2
ūiLH

0
βY

Uβ
ij ujR + h.c,

(64)

where Y Fβij =
(
UFL YFβUF†

R

)
ij

. In these expressions the

mass functions in the interaction basis are:

MD
ij =

v√
2
YD1
ij , MU

ij =
v√
2
YU1
ij , (65)

where v = ⟨H0
1 ⟩ is the Higgs vacuum expectation value.
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C Diagonalization matrices
In order to compare with physical quantities, it is neces-
sary to rotate fields to the mass eigenstates, i.e., uL,R =
UUL,Ru

′
L,R and dL,R = UDL,Rd

′
L,R, where prime means the

interaction basis. In our formalism the mass matrices are
Hermitian, hence the right-handed and left-handed diago-
nalizing matrices are identical; however, we obtain a minus
sign on the quark mass eigenvalues of the second family
(see comments after Eq. (4f) and references [29,39]). To
get a positive mass matrix we introduce the identity ma-
trix written as I2I2 = 1 with I2 = diag(1,−1, 1), i.e.,

MU
ij =

(
UU†λUUU

)
ij
=
(
UU†
L mUUUR

)
ij
=

v√
2
YU1
ij

=
v√
2
R1αy

Uα
ij ,

MD
ij =

(
UD†λDUD

)
ij
=
(
UD†
L mUUDR

)
ij
=

v√
2
YD1
ij

=
v√
2
R1αy

Dα
ij , (66)

where:

λU,D =diag(mu,d,−mc,s,mt,b),

mU,D =diag(mu,d,mc,s,mt,b),

the matrices R and Y are defined in Eqs. (57) and (60),
respectively; and

UU,DL = UU,D, UU,DR = I2U
U,D, (67)

where UU,D are the diagonalization matrices (68) and
(69). In the second and fourth lines in (66) we made use
of (65). It is important to stress that the texture-zeros pat-
tern in the matrix YF1

ij are identical to those in the original
Yukawa couplings yFαij , since the sum over α does not mix
the i, j indices. In fact, according to equations (22) and
(23), MU,D = vα√

2
yU,Dαij = v√

2
R1αy

U,Dα
ij , therefore R1α =

vα
v . The diagonalization matrices are:

UU† =


ei(ϕCu+θ1u)

√
mcmt(Au−mu)

Au(mc+mu)(mt−mu) −ei(ϕCu+θ2u)
√

(Au+mc)mtmu
Au(mc+mt)(mc+mu)

ei(ϕCu+θ3u)
√

mc(mt−Au)mu
Au(mc+mt)(mt−mu)

−ei(ϕBu+θ1u)
√

(Au+mc)(mt−Au)mu
Au(mc+mu)(mt−mu) −ei(ϕBu+θ2u)

√
mc(mt−Au)(Au−mu)
Au(mc+mt)(mc+mu)

ei(ϕBu+θ3u)
√

(Au+mc)mt(Au−mu)
Au(mc+mt)(mt−mu)

eiθ1u
√

mu(Au−mu)
(mc+mu)(mt−mu) eiθ2u

√
mc(Au+mc)

(mc+mt)(mc+mu)
eiθ3u

√
mt(mt−Au)

(mc+mt)(mt−mu)

 , (68)

UD† =


eiθ1d

√
mb(mb−ms)ms

(mb−md)(md+ms)(mb+md−ms)
−eiθ2d

√
mb(mb+md)md

(md+ms)(mb+md−ms)(mb+ms)

√
md(ms−md)ms

(mb−md)(mb+md−ms)(mb+ms)

eiθ1d
√

md(mb−ms)
(mb−md)(md+ms)

eiθ2d
√

(mb+md)ms
(md+ms)(mb+ms)

√
mb(ms−md)

(mb−md)(mb+ms)

−eiθ1d
√

md(mb+md)(ms−md)
(mb−md)(md+ms)(mb+md−ms)

−eiθ2d
√

(mb−ms)ms(ms−md)
(md+ms)(mb+md−ms)(mb+ms)

√
mb(mb+md)(mb−ms)

(mb−md)(mb+md−ms)(mb+ms)

 , (69)

where θ1u, θ2u, θ3u, θ1d y θ2d are arbitrary phases (a third
phase for the diagonalization matrix (69) can be absorbed
by the remaining phases) which are useful to adapt to

the convention of the matrix VCKM = UUL U
D†
L . Taking as

input the SM parameters at the Z pole, the best fit values
are:

θ1u θ2u θ3u θ1d θ2d ϕCu ϕBu
−2.84403 1.85606 −0.00461668 1.93013 −0.976639 −1.49697 0.301461

Au mu mc mt md ms mb

1690.29 MeV 1.2684 MeV 633.197 MeV 171268 MeV 3.14751 MeV 56.1169 MeV 2910.01 MeV

Table 5: Best fit point of the mass matrices parameters to the quark masses and mixing angles at the Z pole.

D FCNC from ∆LKψ

The interaction term (15) between the kinetic terms of the
fermions and the axion is given by:

∆LKψ =
∂µa

2fa

∑
ψ

(xψL − xψR)ψ̄
′γµγ5ψ′ − (xψL + xψR)ψ̄γ

µψ′

=− ∂µa

2fa

∑
ψ

xψL ψ̄
′γµ(1− γ5)ψ′ + xψR ψ̄γ

µ(1 + γ5)ψ′,

By rotating from the interaction basis to the mass basis
for the SM quarks we obtain

=− ∂µa

2fa

(
ūiγ

µ
(
1− γ5

)
∆Uij
LL (q)uj

+d̄iγ
µ
(
1− γ5

)
∆Dij
LL (q)dj + ūiγ

µ
(
1 + γ5

)
∆Uij
RR(u)uj

+d̄iγ
µ
(
1 + γ5

)
∆Dij
RR (d)dj

)
, (70)
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where∆Fij
LL (q) =

(
UDL xq U

D†
L

)ij
and∆Fij

RR (d) =
(
UDR xd U

D†
R

)ij
.

From these expressions we are interested in the terms:

∆LKD =− ∂µa

2fa

(
d̄iγ

µ (1− γ5)∆Dij
LL (q)dj

+d̄iγ
µ (1 + γ5)∆Dij

RR (d)dj

)
(71)

=− ∂µa

2fa
d̄iγ

µ
(
∆Dij
V + γ5∆Dij

A

)
dj ,

=− ∂µad̄iγ
µ
(
gVafifj + γ5gAafifj

)
dj , (72)

From this expression, we can infer vector and axial
couplings for any type of fermions F = U,D,E,N

gV,Aafifj =
1

2fa
∆Fij
V,A. (73)

These couplings (73), generate FCNC processes as those
shown in Fig. 1. According to reference [184]

Γ =
S|p⃗|

8πm2
K

|M|2, (74)

where |p⃗| = mKλ
1/2
Kπa/2, and

λKπa =
(
1− (ma+mπ)

2

m2
K

)(
1− (ma−mπ)2

m2
K

)
and S = 1. The

leading order S matrix element for K− → π−a is

M =⟨π−(pπ), a(pa)|iL(s→ d)|K−(pK)⟩

=− igVads(pK − pπ)µ⟨π−(pπ)|d̄γµs|K−(pK)⟩⟨a(pa)|a(pa)|0⟩

=− igVads(m
2
K −m2

π)f0(q
2), (75)

where q2 = (pK − pπ)
2 and :

f0(q
2) = f+(q

2) +
q2f−(q

2)

(m2
K −m2

π)
, (76)

⟨a(pa)|a(pa)|0⟩ = ⟨a(pa)|a(pa)⟩ = 1 (77)

As the initial and final states have the same parity
only the matrix elements of the vector current are different
from zero [185], then

Γ (K+ → π+a) =
m3
K

16π

(
1− m2

π

m2
K

)2

λ
1/2
Kπaf

2
0 (m

2
a)|gVads|2.

(78)

To calculate the B → V a decay width, where V is a vector
meson, it is necessary to consider the form factors for the
quark level process b→ q [186]

⟨V (k, ϵ)|q̄γµb|B(p)⟩ = 2iV (q2)

mB +mV
ϵµνρσϵ∗νkρpσ, (79)

⟨V (k, ϵ)|q̄γµγ5b|B(p)⟩ =2mVA0(q
2)
ϵ∗ · q
q2

qµ

+(mB +mV )A1(q
2)

(
ϵ∗µ − ϵ∗ · q

q2
qµ
)

−A2(q
2)ϵ∗ · q

(mb +mV )

[
(p+ k)µ − m2

B −m2
V

q2
qµ
]
.

(80)

There are also strong constraints from the decay B →
K∗a, the K∗ kaon is a vectorial meson, parity-even under
inversion of the spatial coordinates. Due to the selection
rules of the Lorentz group only the axial-vector matrix
elements ⟨K∗|s̄γµγ5b|B⟩ are different from zero

M =− igVasbqµ⟨K(pK)|s̄γµγ5b|B(pP )⟩
=− igVasb2mK∗A0(q

2)ϵ∗ · q,

where qµ = (pB − pK)µ. Summing over the final polariza-
tion states

∑
s ϵ
µ∗(s)ϵν∗(s) =

(
−gµν + pµ

K∗p
ν
K∗

m2
K∗

)
, we get

∑
s

|M|2 = |gAasb|2A2
0(m

2
a)m

4
BλBK∗a, (81)

and replacing this result in Eq. 74 the width decay can be
written as

Γ (B → K∗a) =
m3
B

16π
λ
3/2
BK∗aA

2
0(m

2
a)|gAasb|2. (82)

E Scalar potential

In order to explain the textures of the mass matrices of
our model, four scalar doublets Φα were introduced in sec-
tion 3, additionally a scalar singlet S is required to break
the PQ symmetry. For completeness it is necessary to in-
troduce a potential V (Φ, S1, S2) with all the terms allowed
by the PQ symmetry. From this potential it is possible to
obtain the masses of the scalar fields allowing us to deter-
mine which of them correspond to Goldstone bosons. One
of the CP odd massless scalars must correspond to the
axion field associated with the breaking of PQ symmetry.
The most general CP invariant scalar potential in the PQ
symmetry scenario is

V (Φ, Si) =

4∑
i=1

µ2
iΦ

†
iΦi +

2∑
k=1

µ2
skS

∗
kSk +

4∑
i=1

λi
(
Φ†
iΦi
)2

+

2∑
k=1

λsk (S
∗
kSk)

2
+

4∑
i=1

2∑
k=1

λisk

(
Φ†
iΦi
)
(S∗
kSk)

+

4∑
i, j = 1︸ ︷︷ ︸
i<j

(
λij
(
Φ†
iΦi
)(

Φ†
jΦj
)
+ Jij

(
Φ†
iΦj
)(

Φ†
jΦi
))

+ λs1s2 (S
∗
1S1) (S

∗
2S2)

+ K1

((
Φ†

1Φ2

)(
Φ†

3Φ2

)
+ h.c.

)
+ K2

((
Φ†

3Φ4

)(
Φ†

3Φ1

)
+ h.c.

)
+ F1

((
Φ†

2Φ3

)
S1 + h.c.

)
+ F2

((
Φ†

1Φ2

)
S1 + h.c.

)
+

1

2

(
mζS2

)2
SB
ζ2S2

+
1

2

(
mξS2

)2
SB
ξ2S2

. (83)

where the terms proportional to Fi are allowed by the
particular choice of the PQ charges and the Fi couplings
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have units of mass. After spontaneous symmetry break-
ing (SSB), the four Higgs doublets acquire a VEV that
gives masses to all SM particles and the scalar doublets
could be written as

Φα =

(
ϕ+α

vα+hα+iηα√
2

)
, Φ̃α = iσ2Φ

∗
α,

Si =
v
Si

+ ξSi + iζSi√
2

; i = 1, 2. (84)

The singlet scalar field S1 breaks the PQ symmetry at
the high energy scale given by vs1 . The last two terms in
the equation (83) correspond to soft breaking masses of
the imaginary and the real part of S2, which are gener-
ated at one loop in the Coleman-Weinberg potential from
the interaction term λQS2Q̄RQL + h.c. From Eqs. (35)
and (37) we have the following hierarchy among VEVs,
v4 ≪ v1, v2 ≪ v3 ≪ vS1

∼ vS2
. In the scalar sector, we

have CP-even, CP-odd, and charged fields. As shown in
Appendices E.1, E.2 and E.3 by choosing the couplings
close to one, as follows:

λ1 = λ2 = λ4 = λs1 = λs2 = λs1s2 = 1,

λ3 = 0.463

λij = 1 for any i, j,
λjs1 = λjs2 = 1 for any j,
J12 = J13 = J23 = J24 = −1, otherwise Jij = 1,

K1 = K2 = −1,

F1 = F2 = −1GeV, (85)

we obtain scalar masses above the TeV scale (except
for the Higgs boson) allowing them to avoid LHC con-
straints on heavy Higgs bosons [187] and charged scalar
bosons [188]. The λ3 value was chosen in order to adjust
the SM Higgs mass. In our approach, the vi (Eqs. (35)
and (37)) are determined from the SM fermion masses
and the quark mass matrix texture, vs1 is still a free pa-
rameter, nonetheless, this parameter is important for the
axion physics due to the relation [189],

fa =
vs1
2N

. (86)

In our calculations we took vs1 ≈ vs2 ≈ 106GeV. It is
important to emphasize that in our model fa can take
arbitrary values, however, a small fa restrict ϵ (Eq. 10)
to values close to zero. Taking into account all these con-
siderations and the Eq. (85) the scalar mass spetrum (in
GeV) is:

CP even = {1.73× 106, 1.× 106, 6.54× 103, 1.97× 103,

1.09× 103, 125},

CP odd = {6.54× 103, 1.97× 103, 1.09× 103, 0, 0,mζS2
},

Charged fields = {6.54× 103, 1.97× 103, 1.11× 103, 0}. (87)

The mass spectrum of the scalar fields is above the TeVs
scale, except the SM Higgs which was set to 125 GeV.
The pseudoscalar sector (CP odd fields) have two zero

mass eigenstates, the axion field and the Goldstone boson
which is absorbed by the longitudinal component of the
SM Z boson. A similar result is achieved in the charged
sector where it is possible to identify the two Goldstone
bosons needed to give mass to the SM W± fields.

E.1 CP-even scalar sector

As shown in Eq. 56 after the SSB the four Higgs doublets
and the scalar singlets acquire VEVs, yielding the squared
mass matrix M2

R for CP-even scalar particles expressed in
the (h1, h2, h3, h4, ξS1

, ξS2
) basis, with entries given by:

M2
R11

= −K1v
2
2v3 +K2v

2
3v4 +

√
2F2v2vs1 − 4v31λ1

2v1
,

M2
R12

=
F2vs1√

2
+ v2(K1v3 + v1H12),

M2
R13

=
K1v

2
2

2
+ v3(K2v4 + v1H13),

M2
R14

=
K2v

2
3

2
+ v1v4H14,

M2
R15

=
F2v2√

2
+ v1vs1λ1s1 ,

M2
R22

=
−
√
2(F2v1 + F1v3)vs1 + 4v32λ2

2v2
,

M2
R23

= K1v1v2 +
F1vs1√

2
+ v2v3H23

M2
R24

= v2v4H24,

M2
R25

=
F2v1√

2
+
F1v3√

2
+ v2vs1λ2s1 ,

M2
R33

= −K1v1v
2
2 +

√
2F1v2vs1 − 4v33λ3
2v3

,

M2
R34

= v3(K2v1 + v4H34),

M2
R35

=
F1v2√

2
+ v3vs1λ3S1 ,

M2
R44

= −K2v1v
2
3

2v4
+ 2v24λ4,

M2
R45

= v4vs1λ4s1 ,

M2
R55

=
−
√
2v2(F2v1 + F1v3) + 4v3s1λS1

2vs1

M2
Rj6 = λjs2vjvs2 , for j<5

M2
R56

= λs1s2vs1vs2

M2
R66

= 2λs2v
2
s2 +m2

ξS2
. (88)

whereHij = λij+Jij . At leading order, the eigenvalues
of this matrix are approximately (in GeV):

{1.73× 106, 1.× 106, 6.54× 103, 1.97× 103,

1.09× 103, 125}, (89)

Where the value 125 GeV corresponds to the SM Higgs.
Hereafter, the signs of the couplings are chosen in such a
way that the eigenvalues are positive.
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E.2 Charged scalar sector

The square of the mass matrix for the charged scalar sec-
tor, M2

C , after SSB in the Higgs sector, can be written in
the (ϕ±1 , ϕ

±
2 , ϕ

±
3 , ϕ

±
4 ) basis as

M2
C11

= −J12v1v
2
2 +K1v

2
2v3 + J13v1v

2
3

2v1

+
K2v

2
3v4 + J14v1v

2
4 +

√
2F2v2vs1

2v1
,

M2
C12

=
1

2

(
J12v1v2 +K1v2v3 +

√
2F2vs1

)
,

M2
C13

=
1

2
v3(J13v1 +K2v4),

M2
C14

=
J14v1v4

2
,

M2
C22

= −J12v
2
1v2 + 2K1v1v2v3

2v2

+
J23v2v

2
3 + J24v2v

2
4 +

√
2F2v1vs1 +

√
2F1v3vs1

2v2
,

M2
C23

=
1

2

(
K1v1v2 + J23v2v3 +

√
2F1vs1

)
,

M2
C24

=
J24v2v4

2
,

M2
C33

= −K1v1v
2
2 + J13v

2
1v3 + J23v

2
2v3

2v3

+
2K2v1v3v4 + J34v3v

2
4 +

√
2F1v2vs1

2v3
,

M2
C34

=
1

2
v3(K2v1 + J34v4),

M2
C44

= −K2v1v
2
3 + J14v

2
1v4 + J24v

2
2v4 + J34v

2
3v4

2v4
. (90)

For this matrix, eigenvalues numerically are close its di-
agonal elements, i.e., (in GeV):

{6.54× 103, 1.97× 103, 1.11× 103, 0}. (91)

The zero mass eigenvalue corresponds to the Goldstone
Boson absorbed in the longitudinal component of the charged
vector fields W±.

E.3 CP-odd scalar sector

The square of the mass matrix for the CP-odd scalars in
the (η1, η2, η3, η4, ζS1 , ζS2) basis is given by

M2
I11 = −K1v

2
2v3 +K2v

2
3v4 +

√
2F2v2vs1

2v1
,

M2
I12 = K1v2v3 +

F2vs1√
2
,

M2
I13 = −K1v

2
2

2
+K2v3v4,

M2
I14 = −K2v

2
3

2
,

M2
I15 =

F2v2√
2
,

M2
I22 = −4K1v1v2v3 +

√
2(F2v1 + F1v3)vs1
2v2

,

M2
I23 = K1v1v2 +

F1vs1√
2
,

M2
I24 = 0,

M2
I25 =

−F2v1 + F1v3√
2

,

M2
I33 = −2K2v1v4 −

v2
(
K1v1v2 +

√
2F1vs1

)
2v3

,

M2
I34 = K2v1v3,

M2
I35 = −F1v2√

2
,

M2
I44 = −K2v1v

2
3

2v4
,

M2
I45 = 0,

M2
I55 = −v2(F2v1 + F1v3)√

2vs1

M2
Ij6 = 0, for j<6

M2
I66 = m2

ζS2
(92)

At leading order the eigenvalues of this matrix are (in
GeV):

{6.54× 103, 1.97× 103, 1.09× 103, 0, 0,mζ2} (93)

One of the zero mass eigenvalues corresponds to the Gold-
stone Boson absorbed in the longitudinal component of
the neutral vector field of the SM Z0, and the other one
corresponds to the axion field a.
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