Alternative 3-3-1 models with exotic electric charges

Presented by Eduardo Rojas In collaboration with: Richard Benavides, Yithsbey Giraldo, William A. Ponce, Eduard Suarez MOCa (Materia Oscura en Colombia); Udea Medellin

Universidad de Nariño

A (10) < A (10) </p>

May 12, 2023

Outline

1 3-3-1 models

2 3-3-1 lepton and quark families.

(3) Exotic families (¿fermionic dark matter candidates?)

4 Anomalies

< □ > < 同 > < 回 > < 回 > < 回 >

- The triangle anomalies must be canceled out only with a number of generations multiple of 3 (For example a 3-3-1 model of E_6 is not interesting in that sense)
- it must contain the standard model (SM).
- There is a lot of literature about 3-3-1 models. Which typically reduces to those models with nonexotic charges.
- By embedding this group in a larger one, it is possible to explain the charge quantization.

3-3-1 models

The so-called 3-3-1 models are based on the gauge group $SU(3)_c \otimes SU(3)_L \otimes U(1)_X$. For the 3-3-1 models, the most general electric charge operator in the extended electroweak sector is

$$Q = T_{L3} + \beta T_{L8} + X \mathbb{1}, \tag{1}$$

where $T_{La} = \lambda_a/2$, with λ_a , a = 1, 2, ..., 8 are the Gell-Mann matrices for $SU(3)_L$ normalized as $Tr(\lambda_a\lambda_b) = 2\delta_{ab}$ and $\mathbb{1} = Diag(1, 1, 1)$ is the diagonal 3×3 unit matrix.

イロト イ団ト イヨト イヨト 二日

In general, we have for any set of generators T^a of a symmetry SU(N) with $N \leq 3$, a set of generators $-T^{a*}$, which satisfy the exact group algebra. This set of generators spawns the so-called conjugate representation of SU(N).

$$\{T^a, T^b\} = if^{abc} T^c \longrightarrow \{-T^{a*}, -T^{b*}\} = if^{abc} (-T^{c*})$$
(2)

We can obtain the charges of the SM doublets as a linear combination of the generators in the standard representation (i.e, T^a), or as the linear combination of the generators in the conjugated one (i.e, $-T^{a*}$). In each case the value of the X charge is different.

3-3-1 models

- For $\beta = 1/\sqrt{3}$, all the exotic particles have electrical charges like the SM.
- For $\beta = \sqrt{3}$, particles with exotic charges appear in the triplet third component.

$$3_L = \begin{pmatrix} 0\\-1\\-2 \end{pmatrix}, \qquad 3_L^* = \begin{pmatrix} -1\\0\\+1 \end{pmatrix}$$
(3)

$$3_Q = \begin{pmatrix} +2/3 \\ -1/3 \\ -4/3 \end{pmatrix}, \qquad 3_L^* = \begin{pmatrix} -1/3 \\ +2/3 \\ +5/3 \end{pmatrix}$$
(4)

For $\beta = \sqrt{3}$ the electric charges of the triplet and the anti-triplet) are: $Q_{\text{QED}}(3) = \text{Diag}(1 + X, X, -1 + X)$ and $Q_{\text{QED}}(3^*) = \text{Diag}(-1 + X, X, 1 + X)$, respectively.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - ヨー のへの

3-3-1 lepton and quark generations.

To reproduce the SM we account for all the possible lepton S_{L_i} and quark S_{Q_i} families consistent with the SM, i.e.,

- Each family requires one quark doublet q_i and one lepton doublet ℓ_i .
- Three singlets under SU(2) with charges $2/3 u_i$ and d_i and e_i correspond to the right-hand components of the doublets of SU(2).
- The *SU*(2) singlets can correspond to *SU*(3) singlets or the third component of a *S*(3) triplet.

イロト 不得 トイヨト イヨト 二日

Lepton families S_{L_i}

- Lepton generation $S_{L1} = [(\nu_e^0, e^-, E_2^{--}) \oplus e^+ \oplus E_2^{++}]_L$ with quantum numbers (1, 3, -1); (1, 1, 1) and (1, 1, 2) respectively.
- Set S_{L2} = [(e⁻, ν_e⁰, E₁⁺) ⊕ e⁺ ⊕ E₁⁻]_L with quantum numbers (1, 3^{*}, 0); (1, 1, 1) and (1, 1, -1), respectively.
- Set $S_{L3} = [(e^-, \nu_e^0, e^+)]_L$ with quantum numbers $(1, 3^*, 0)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Quark families S_{Q_i}

For $\beta = \sqrt{3}$ the electric charges of a triplet (or anti-triplet) are: $Q_{\text{QED}}(3) = \text{Diag}(1 + X, X, -1 + X)$ and $Q_{\text{QED}}(3^*) = \text{Diag}(-1 + X, X, 1 + X)$, respectively.

- Set $S_{Q1} = [(d, u, Q_2) \oplus u^c \oplus d^c \oplus Q_2^c]_L$ with quantum numbers $(3, 3^*, 2/3)$; $(3^*, 1, -2/3)$; $(3^*, 1, 1/3)$ and $(3^*, 1, -5/3)$, respectively.
- Set $S_{Q2} = [(u, d, Q_1) \oplus u^c \oplus d^c \oplus Q_1^c]_L$ with quantum numbers (3, 3, -1/3); $(3^*, 1, -2/3)$; $(3^*, 1, 1/3)$ and $(3^*, 1, 4/3)$, respectively.

イロト イポト イヨト イヨト 二日

Exotic families and fermionic dark matter candidates

- It is advantageous to cancel anomalies by introducing triplets and anti-triplets of exotic leptons, for example:
 - First exotic lepton set, S_{E1} = [(N₁⁰, E₄⁺, E₃⁺⁺) ⊕ E₄⁻ ⊕ E₃⁻⁻]_L with quantum numbers (1, 3^{*}, 1); (1, 1, -1) and (1, 1, -2), respectively.
 - Second exotic lepton set, S_{E2} = [(E₅⁺, N₂⁰, E₆⁻) ⊕ E₅⁻ ⊕ E₆⁺]_L with quantum numbers (1, 3, 0); (1, 1, -1) and (1, 1, 1), respectively.

In these triplets, it is possible to identify fermionic dark matter candidates.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Anomalies

Table 1 shows the contribution of the sets to each of the anomalies.

$$A = \operatorname{Tr}\left[T^{*}\left\{T^{b}, T^{c}\right\}\right] = 0.$$
(5)

Anomalías	S_{L1}	S_{L2}	S_{L3}	S_{Q1}	S_{Q2}	S_{E1}	S _{E2}
$[SU(3)_C]^2 \otimes U(1)_X$	0	0	0	0	0	0	0
$[SU(3)_L]^2 \otimes U(1)_X$	-1	0	0	2	-1	1	0
$[Grav]^2 \otimes U(1)_X$	0	0	0	0	0	0	0
$[U(1)_X]^3$	6	0	0	-12	6	-6	0
$[SU(3)_{L}]^{3}$	1	-1	$^{-1}$	-3	3	-1	1

Table: Anomalías para campos fermiónicos del modelo 331 con $\beta = \sqrt{3}$

イロト イポト イヨト イヨト

New 3-3-1 models

i	Just lepton families S_{Lj}	one quark family S_{Qj}	two quark families S_{Qj}	three quark families S_{Qj}
	$S_{E2} + S_{L2}$	$S_{E2} + 2S_{L1} + S_{Q1}$	$S_{L1} + S_{L2} + S_{Q1} + S_{Q2}$	$3S_{L1} + 2S_{Q1} + 1S_{Q2}$
	$S_{E1} + S_{L1}$	$S_{E1} + 2S_{L2} + S_{Q2}$	$S_{L1} + S_{L3} + S_{Q1} + S_{Q2}$	$3S_{L2} + 1S_{Q1} + 2S_{Q2}$
	$S_{E2} + S_{L3}$	$S_{E1} + S_{L2} + S_{L3} + S_{Q2}$		$3S_{L3} + 1S_{Q1} + 2S_{Q2}$
		$S_{E1} + 2S_{L3} + S_{Q2}$		$2S_{L2} + 1S_{L3} + 1S_{Q1} + 2S_{Q2}$
				$1S_{L2} + 2S_{L3} + 1S_{Q1} + 2S_{Q2}$

Table: Anomaly free sets (AFS) for $\beta = \sqrt{3}$.

Pres: Name (RRI-WVU)

May 12, 2023 12 / 16

イロト イポト イヨト イヨト 二日

LHC Constraints

We consider the ATLAS search for high-mass dilepton resonances in the mass range of 250 GeV to 6 TeV in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV during Run 2 of the LHC with an integrated luminosity of 139 fb⁻¹ [1]. This data was collected from searches of Z' bosons decaying dileptons. We obtain the upper limit from the intersection of the theoretical predictions with the upper limit on the cross-section at a 95% confidence level. We use the expressions given in Ref. [2, 3, 4] to calculate the theoretical

Particle content	LHC-Lower limit		
first generation	in TeV		
$S_{L3} + S_{Q1}$	7.3		
$S_{L3} + S_{Q2}$	6.4		

Table: The lepton families S_{L_1} and S_{L_2} are strongly coupled (For S_{L_1} and S_2 the lehf-handed doubled ℓ and the right-handed charged singled e have couplings larger than 1, respectively). Therefore only S_{L_3} is phenomenologically viable for the first family. Depending on the quark content, i.e., S_{Q_1} or S_{Q_2} , we have two different constraints.

< □ > < 同 > < 回 > < 回 > < 回 >

Conclusions

- Several SU(3)_L generations have been proposed.
- We report the list of the minimal anomaly-free sets for 3-3-1 models with $\beta = \sqrt{3}$
- We have given a full account of the possible 3-3-1 models with $\beta = \sqrt{3}$ and their corresponding LHC constraints.

<ロト <問ト < 目ト < 目ト

Frame Title

- G. Aad *et al.*, "Search for high-mass dilepton resonances using 139 fb^{-1} of *pp* collision data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector," *Phys. Lett. B*, vol. 796, pp. 68–87, 2019.
- J. Erler, P. Langacker, S. Munir, and E. Rojas, "Z' Bosons at Colliders: a Bayesian Viewpoint," *JHEP*, vol. 11, p. 076, 2011.
- C. Salazar, R. H. Benavides, W. A. Ponce, and E. Rojas, "LHC Constraints on 3-3-1 Models," *JHEP*, vol. 07, p. 096, 2015.
- R. H. Benavides, L. Muñoz, W. A. Ponce, O. Rodríguez, and E. Rojas, "Electroweak couplings and LHC constraints on alternative Z' models in E₆," Int. J. Mod. Phys. A, vol. 33, no. 35, p. 1850206, 2018.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >