## Alternative 3-3-1 models with exotic electric charges

## Presented by Eduardo Rojas

In collaboration with: Richard Benavides, Yithsbey Giraldo, William A.
Ponce, Eduard Suarez
MOCa (Materia Oscura en Colombia); Udea Medellin

Universidad de Nariño


May 12, 2023

## Outline

(1) 3-3-1 models
(2) 3-3-1 lepton and quark families.
(3) Exotic families ( ¿fermionic dark matter candidates?)
(4) Anomalies
(5) Conclusions

- The triangle anomalies must be canceled out only with a number of generations multiple of 3 (For example a 3-3-1 model of $E_{6}$ is not interesting in that sense)
- it must contain the standard model (SM).
- There is a lot of literature about 3-3-1 models. Which typically reduces to those models with nonexotic charges.
- By embedding this group in a larger one, it is possible to explain the charge quantization.


## 3-3-1 models

The so-called 3-3-1 models are based on the gauge group $S U(3)_{c} \otimes S U(3)_{L} \otimes U(1)_{X}$. For the 3-3-1 models, the most general electric charge operator in the extended electroweak sector is

$$
\begin{equation*}
Q=T_{L 3}+\beta T_{L 8}+X \mathbb{1} \tag{1}
\end{equation*}
$$

where $T_{L a}=\lambda_{a} / 2$, with $\lambda_{a}, a=1,2, \ldots, 8$ are the Gell-Mann matrices for $\operatorname{SU}(3)_{L}$ normalized as $\operatorname{Tr}\left(\lambda_{a} \lambda_{b}\right)=2 \delta_{a b}$ and $\mathbb{1}=\operatorname{Diag}(1,1,1)$ is the diagonal $3 \times 3$ unit matrix.

In general, we have for any set of generators $T^{a}$ of a symmetry $S U(N)$ with $N \leq 3$, a set of generators $-T^{a *}$, which satisfy the exact group algebra. This set of generators spawns the so-called conjugate representation of $S U(N)$.

$$
\begin{equation*}
\left\{T^{a}, T^{b}\right\}=i f^{a b c} T^{c} \longrightarrow\left\{-T^{a *},-T^{b *}\right\}=i f^{a b c}\left(-T^{c *}\right) \tag{2}
\end{equation*}
$$

We can obtain the charges of the SM doublets as a linear combination of the generators in the standard representation (i.e, $T^{a}$ ), or as the linear combination of the generators in the conjugated one (i.e, $-T^{a *}$ ). In each case the value of the $X$ charge is different.

## 3-3-1 models

- For $\beta=1 / \sqrt{3}$, all the exotic particles have electrical charges like the SM.
- For $\beta=\sqrt{3}$, particles with exotic charges appear in the triplet third component.

$$
\begin{gather*}
3_{L}=\left(\begin{array}{r}
0 \\
-1 \\
-2
\end{array}\right), \quad 3_{L}^{*}=\left(\begin{array}{r}
-1 \\
0 \\
+1
\end{array}\right)  \tag{3}\\
3_{Q}=\left(\begin{array}{l}
+2 / 3 \\
-1 / 3 \\
-4 / 3
\end{array}\right), \quad 3_{L}^{*}=\left(\begin{array}{l}
-1 / 3 \\
+2 / 3 \\
+5 / 3
\end{array}\right) \tag{4}
\end{gather*}
$$

For $\beta=\sqrt{3}$ the electric charges of the triplet and the anti-triplet) are:
$Q_{\mathrm{QED}}(3)=\operatorname{Diag}(1+X, X,-1+X)$ and $Q_{\mathrm{QED}}\left(3^{\star}\right)=\operatorname{Diag}(-1+X, X, 1+X)$, respectively.

## 3-3-1 lepton and quark generations.

To reproduce the SM we account for all the possible lepton $S_{L_{i}}$ and quark $S_{Q_{i}}$ families consistent with the SM, i.e.,

- Each family requires one quark doublet $q_{i}$ and one lepton doublet $\ell_{i}$.
- Three singlets under $S U(2)$ with charges $2 / 3 u_{i}$ and $d_{i}$ and $e_{i}$ correspond to the right-hand components of the doublets of $S U(2)$.
- The $S U(2)$ singlets can correspond to $S U(3)$ singlets or the third component of a $S(3)$ triplet.


## Lepton families $S_{L_{i}}$

- Lepton generation $S_{L 1}=\left[\left(\nu_{e}^{0}, e^{-}, E_{2}^{--}\right) \oplus e^{+} \oplus E_{2}^{++}\right]_{L}$ with quantum numbers ( $1,3,-1$ ); $(1,1,1)$ and $(1,1,2)$ respectively.
- Set $S_{L 2}=\left[\left(e^{-}, \nu_{e}^{0}, E_{1}^{+}\right) \oplus e^{+} \oplus E_{1}^{-}\right]_{L}$ with quantum numbers $\left(1,3^{*}, 0\right) ;(1,1,1)$ and $(1,1,-1)$, respectively.
- Set $S_{L 3}=\left[\left(e^{-}, \nu_{e}^{0}, e^{+}\right)\right]_{L}$ with quantum numbers $\left(1,3^{*}, 0\right)$.


## Quark families $S_{Q_{i}}$

For $\beta=\sqrt{3}$ the electric charges of a triplet (or anti-triplet) are:
$Q_{\mathrm{QED}}(3)=\operatorname{Diag}(1+X, X,-1+X)$ and $Q_{\mathrm{QED}}\left(3^{\star}\right)=\operatorname{Diag}(-1+X, X, 1+X)$, respectively.

- Set $S_{Q 1}=\left[\left(d, u, Q_{2}\right) \oplus u^{c} \oplus d^{c} \oplus Q_{2}^{c}\right]_{L}$ with quantum numbers $\left(3,3^{*}, 2 / 3\right)$; (3* $, 1,-2 / 3) ;\left(3^{*}, 1,1 / 3\right)$ and $\left(3^{*}, 1,-5 / 3\right)$, respectively.
- Set $S_{Q 2}=\left[\left(u, d, Q_{1}\right) \oplus u^{c} \oplus d^{c} \oplus Q_{1}^{c}\right]_{L}$ with quantum numbers $(3,3,-1 / 3)$; $\left(3^{*}, 1,-2 / 3\right) ;\left(3^{*}, 1,1 / 3\right)$ and $\left(3^{*}, 1,4 / 3\right)$, respectively.


## Exotic families and fermionic dark matter candidates

It is advantageous to cancel anomalies by introducing triplets and anti-triplets of exotic leptons, for example:

- First exotic lepton set, $S_{E 1}=\left[\left(N_{1}^{0}, E_{4}^{+}, E_{3}^{++}\right) \oplus E_{4}^{-} \oplus E_{3}^{--}\right]_{L}$ with quantum numbers $\left(1,3^{*}, 1\right) ;(1,1,-1)$ and $(1,1,-2)$, respectively.
- Second exotic lepton set, $S_{E 2}=\left[\left(E_{5}^{+}, N_{2}^{0}, E_{6}^{-}\right) \oplus E_{5}^{-} \oplus E_{6}^{+}\right]_{L}$ with quantum numbers $(1,3,0) ;(1,1,-1)$ and $(1,1,1)$, respectively.

In these triplets, it is possible to identify fermionic dark matter candidates.

## Anomalies

Table 1 shows the contribution of the sets to each of the anomalies.

$$
\begin{equation*}
A=\operatorname{Tr}\left[T^{a}\left\{T^{b}, T^{c}\right\}\right]=0 \tag{5}
\end{equation*}
$$

| Anomalías | $S_{L 1}$ | $S_{L 2}$ | $S_{L 3}$ | $S_{Q 1}$ | $S_{Q 2}$ | $S_{E 1}$ | $S_{E 2}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\left[S U(3)_{C}\right]^{2} \otimes U(1)_{x}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\left[S U(3)_{L}\right]^{2} \otimes U(1)_{x}$ | -1 | 0 | 0 | 2 | -1 | 1 | 0 |
| $[\text { Grav }]^{2} \otimes U(1)_{X}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\left[U(1)_{x}\right]^{3}$ | 6 | 0 | 0 | -12 | 6 | -6 | 0 |
| $\left[S U(3)_{L}\right]^{3}$ | 1 | -1 | -1 | -3 | 3 | -1 | 1 |

Table: Anomalías para campos fermiónicos del modelo 331 con $\beta=\sqrt{3}$

## New 3-3-1 models

| $i$ | Just lepton families $S_{L j}$ | one quark family $S_{Q j}$ | two quark families $S_{Q j}$ | three quark families $S_{Q j}$ |
| :--- | :--- | :--- | :--- | :--- |
|  | $S_{E 2}+S_{L 2}$ | $S_{E 2}+2 S_{L 1}+S_{Q 1}$ | $S_{L 1}+S_{L 2}+S_{Q 1}+S_{Q 2}$ | $3 S_{L 1}+2 S_{Q 1}+1 S_{Q 2}$ |
|  | $S_{E 1}+S_{L 1}$ | $S_{E 1}+2 S_{L 2}+S_{Q 2}$ | $S_{L 1}+S_{L 3}+S_{Q 1}+S_{Q 2}$ | $3 S_{L 2}+1 S_{Q 1}+2 S_{Q 2}$ |
|  | $S_{E 2}+S_{L 3}$ | $S_{E 1}+S_{L 2}+S_{L 3}+S_{Q 2}$ |  | $3 S_{L 3}+1 S_{Q 1}+2 S_{Q 2}$ |
|  |  | $S_{E 1}+2 S_{L 3}+S_{Q 2}$ |  | $2 S_{L 2}+1 S_{L 3}+1 S_{Q 1}+2 S_{Q 2}$ |
|  |  |  | $1 S_{L 2}+2 S_{L 3}+1 S_{Q 1}+2 S_{Q 2}$ |  |

Table: Anomaly free sets (AFS) for $\beta=\sqrt{3}$.

## LHC Constraints

We consider the ATLAS search for high-mass dilepton resonances in the mass range of 250 GeV to 6 TeV in proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV during Run 2 of the LHC with an integrated luminosity of $139 \mathrm{fb}^{-1}$ [1]. This data was collected from searches of $Z^{\prime}$ bosons decaying dileptons. We obtain the upper limit from the intersection of the theoretical predictions with the upper limit on the cross-section at a $95 \%$ confidence level. We use the expressions given in Ref. [2, 3, 4] to calculate the theoretical

| Particle content <br> first generation | LHC-Lower limit <br> in TeV |
| :---: | :---: |
| $S_{L 3}+S_{Q 1}$ | 7.3 |
| $S_{L 3}+S_{Q 2}$ | 6.4 |

Table: The lepton families $S_{L_{1}}$ and $S_{L_{2}}$ are strongly coupled (For $S_{L_{1}}$ and $S_{2}$ the lehf-handed doubled $\ell$ and the right-handed charged singled $e$ have couplings larger than 1 , respectively). Therefore only $S_{L_{3}}$ is phenomenologically viable for the first family. Depending on the quark content, i.e., $S_{Q_{1}}$ or $S_{Q_{2}}$, we have two different constraints.

## Conclusions

- Several $S U(3)_{L}$ generations have been proposed.
- We report the list of the minimal anomaly-free sets for 3-3-1 models with $\beta=\sqrt{3}$
- We have given a full account of the possible 3-3-1 models with $\beta=\sqrt{3}$ and their corresponding LHC constraints.


## Frame Title

囯 G. Aad et al., "Search for high-mass dilepton resonances using 139 $\mathrm{fb}^{-1}$ of $p p$ collision data collected at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector," Phys. Lett. B, vol. 796, pp. 68-87, 2019.

围 J. Erler, P. Langacker, S. Munir, and E. Rojas, "Z' Bosons at Colliders: a Bayesian Viewpoint," JHEP, vol. 11, p. 076, 2011.
(R. Salazar, R. H. Benavides, W. A. Ponce, and E. Rojas, "LHC Constraints on 3-3-1 Models," JHEP, vol. 07, p. 096, 2015.

R R. H. Benavides, L. Muñoz, W. A. Ponce, O. Rodríguez, and E. Rojas, "Electroweak couplings and LHC constraints on alternative Z' models in E6," Int. J. Mod. Phys. A, vol. 33, no. 35, p. 1850206, 2018.

