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Jamming graphs: A local approach to global mechanical rigidity
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We revisit the concept of minimal rigidity as applied to frictionless, repulsive soft sphere packings in two

dimensions with the introduction of the jamming graph. Minimal rigidity is a purely combinatorial property

encoded via Laman’s theorem in two dimensions. It constrains the global, average coordination number of the

graph, for example. However, minimal rigidity does not address the geometry of local mechanical stability.

The jamming graph contains both properties of global mechanical stability at the onset of jamming and

local mechanical stability. We demonstrate how jamming graphs can be constructed using local moves via

the Henneberg construction such that these graphs fall under the jurisdiction of correlated percolation. We then

probe how jamming graphs destabilize, or become unjammed, by deleting a bond and computing the resulting

rigid cluster distribution. We also study how the system restabilizes with the addition of new contacts and how a

jamming graph with extra (redundant) contacts destabilizes. The latter endeavor allows us to probe a disk packing

in the rigid phase and uncover a potentially new diverging length scale associated with the random deletion of

contacts as compared to the study of cut-out (or frozen-in) subsystems.
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I. INTRODUCTION

A model system for understanding the onset of rigidity in
disordered particle packing is a d-dimensional collection of
frictionless, repulsive soft spheres at zero temperature [1–5].
At small packing densities, minimal energy configurations
are those with no contacts between particles. As the packing
density is increased, the contact geometry abruptly changes
from nonexistent to one where the average coordination num-
ber equals 2d [2]. Moreover, the local coordination number
for each particle must be at least d + 1 in accordance with
the Hilbert stability condition, or local mechanical stability
[6]. As the packing density is increased even further, the
average coordination number exceeds 2d with each particle
still obeying the Hilbert stability criterion. See Fig. 1 for
an example of a disordered particle packing for a bidisperse
system in this regime.

The abrupt jump in contact geometry indeed has the
flavor of a phase transition even though no symmetries in
the positions of the particles are broken [2–4]. Continuous
transitions are typically accompanied by at least one diverging
length scale at the transition, such as connectivity percolation
[7]. Discontinuous transitions, however, are not typically
characterized by any diverging length scales. And yet, Wyart
and collaborators [8,9] identified a diverging length scale
in the disordered solid phase, denoted as l∗, such that the
combination of the discontinuous jump in the average contact
number and the diverging length scale suggests a more exotic
mixed transition, such as that found in k-core percolation [10].

This length scale, l∗, can be determined by finding a cut-out
subsystem of some length below which there exists extended
zero-energy modes within the subsystem and above which
there does not. At the transition, extended zero-energy modes
proliferate due to the absence of redundant contacts, and l∗ is
of order the system size. As the system solidifies further with
added redundant contacts, l∗ decreases since such contacts
make it less likely for zero-energy modes to extend across
the subsystem. In practice, this length scale l∗ is inferred from
numerical measurements of the frequency at which the density

of states deviates from the plateau region emerging at low
frequencies. Very recently, however, a new construction of l∗

via rigid clusters resulted in a direct numerical measurement
[11]. Another length scale associated with subsystems with
fixed boundaries (as opposed to cut or free boundaries) has
been recently identified and scales similarly with l∗ [12–14],
though corrections to scaling are discussed [12,13].

While the focus on identifying a diverging length scale

has been on the competition between bulk and boundary

effects when cutting out a subsystem and probing for extended

zero-energy modes, little work has been done to search for

a length scale associated with a change in the zero-energy

mode structure in response to the breaking of one or several

FIG. 1. (Color online) A jammed, bidisperse particle packing

with N = 1024 and packing fraction φ = 0.841. The colors denote

the local coordination number, z, with light blue (very light grey)

denoting z = 0, magenta (medium gray) denoting z = 3, red (dark

grey) denoting z = 4, blue (very dark grey) denoting z = 5, orange

(light gray) depicting z = 6, and purple (dark medium gray) denoting

z = 7.
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contacts, for example. After all, when searching for diverging

length scales in systems undergoing phase transitions, one

typically perturbs the system and computes the length scale

over which the system responds to that perturbation. And

while prior focus on cut-out subsystems has certainly proved

useful, we ask what can be learned from removing one or

two contacts and looking for a length scale over which the

perturbation affects the mode structure. Point perturbations

have been performed when investigating the force network of

the particle packing above jamming [15,16] and on phonon

modes in floppy networks, i.e., below jamming [17]. Here,

we explore random bond deletion effects on the structure of

zero-energy modes via the study of rigid clusters, and we ask

the following: Does some diverging length scale fall out of

such computations? If so, is this length scale similar to l∗?
To begin to answer these questions, we first present a way

to build the contact geometry of polydisperse, frictionless,
repulsive soft disks in two dimensions at the onset of rigidity.
We do so with vertices representing particles and bonds
representing contacts between particles. After all, at the
transition there are no forces, i.e., the particles are in contact
but not overlapping, so one does not necessarily need to rely on
forces explicitly to generate the packing. This jamming graph
algorithm uses spatially local rules to generate the contact
geometry in two dimensions—local rules that encode the
global rule of minimal rigidity. Interestingly, the percolation
transition, with its local rules, can be described by a field
theory [18]. If the abrupt changes in contact geometry in
the frictionless, repulsive soft sphere system can also be
characterized by local rules, can such a system be described
by a field theory? After introducing our algorithm, we then
perturb the contact geometry of the jamming graph and study
the resulting rigid cluster distributions.

The study of rigid clusters has its roots in rigidity perco-
lation [19–21]. In rigidity percolation, one demands that the
cluster spanning a system of randomly diluted bonds on a
lattice be rigid in the sense that if each bond were associated
with, for example, a spring, then there would be a finite energy
cost to deforming the cluster. In two dimensions, numerical
studies suggest that the onset of rigidity is a continuous phase
transition [22–24]. Rigidity percolation differs from jamming
in that jamming occurs in a particulate system, where particles
can come in and out of contact, i.e., the connectivity is not
fixed. Rigidity percolation also differs from both jamming and
the jamming graph in that there are local constraints on the
geometry to take into account local mechanical stability in the
presence of purely repulsive forces.

The paper is organized as follows. Section II discusses
the local and global properties of the contact geometry of
frictionless, repulsive soft spheres. Section III presents the
algorithm for building a jamming graph, Sec. IV addresses
perturbations of the jamming graph, and Sec. V discusses the
implications of our results.

II. CONTACT GEOMETRY OF FRICTIONLESS,

REPULSIVE SOFT SPHERES AT THE

ONSET OF RIGIDITY

The initial link between contact geometry and the onset of
rigidity in mechanical networks with fixed connectivity is due

to Maxwell via the Maxwell constraint counting condition
[25]. This is a necessary (but not sufficient) condition for
mechanical rigidity. It does so by counting the number of
zero-energy (floppy) modes in the network, Nf , which depends
on the number of independent constraints, Nc, and the local
degrees of freedom for each particle. For mechanical networks
with particles interacting via central forces,

Nf = Nd − Nc, (1)

where N is the number of particles in the network. The onset
of rigidity, or minimal rigidity, occurs when Nf equals the
number of global degrees of freedom of the network, Ng . When
Nf = Ng , the network is minimally rigid and the removal
of just one edge in the network makes it flexible. In mean
field, one can replace Nc with 〈z〉N

2
, where 〈z〉 is the average

coordination number such that the minimally rigid condition
in the large-N limit becomes 〈z〉 = 2d, i.e., isostaticity.
Numerical simulations indicate that the onset of mechanical
rigidity for soft repulsive, frictionless spheres corresponds to
the isostatic condition even though the connectivity of the
system is not fixed [2].

In two dimensions, one can extend the above necessary con-
dition for minimal rigidity in central-force fixed connectivity
networks, such as the ones studied in rigidity percolation, to
a necessary and sufficient condition using Laman’s theorem
[26]: A network with N vertices is generically minimally
rigid in two dimensions if and only if it has 2N − 3 bonds
and no subgraph of n vertices has more than 2n − 3 bonds.
Laman’s theorem is global (or spatially nonlocal) in the sense
that it involves all possible subgraphs. However, we will
present a construction of the Laman graph implemented via
spatially local rules involving both the addition and deletion
of bonds developed earlier by Henneberg [27]. Such an
algorithm falls under the jurisdiction of correlated percolation
where there are constraints on the occupation of bonds as
the graph is constructed. Note that for Laman’s theorem,
Ng = 3. Moreover, a recent generalization of Laman’s theorem
to kN − Ng extends the concept of minimal rigidity [28].

Fixed connectivity central-force networks from rigidity
percolation and soft, repulsive disks differ from each other in
the following two ways. In the particulate system, the contacts
are not fixed. These contacts break or rearrange as the system
minimizes its energy or responds to perturbations. Addition-
ally, there are only repulsive forces in the particulate system in
contrast to central-force networks, which are typically spring
networks exhibiting both attractive and repulsive forces. Do
these differences have any implications for characterizing the
contact geometry of the particulate system at the onset of
rigidity, or jamming? Indeed, they do. At the transition, in
addition to the system being minimally rigid, each particle
must be locally mechanical stable in the presence of purely
repulsive forces. Otherwise, an infinitesimal perturbation can
break a contact and the system becomes flexible.

What does local mechanical stability mean in terms of
constraints on the contact geometry? In two dimensions, a
particle must have at least three contacts, and those contacts
must be organized in such a way that the particle cannot escape
its local environment via a perturbation. More precisely, any
particle should have at least three neighbors, i.e., it is 3 − core,
and the particle should be inside a triangle determined by at
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(b)(a)

FIG. 2. (Color online) (a) The center particle is not mechanically

stable (for the other two particles fixed). (b) The center particle is

mechanically stable.

least three of its neighbors [6]. This local geometric condition
is known as the Hilbert stability condition and is illustrated
in Fig. 2. If this local condition is not obeyed, then the entire
packing can become unstable due to an infinitesimal, local
perturbation.

Therefore, just as Alexander [6] argued that the concept
of geometrical rigidity for spring networks, when extended
to particle networks, needs to incorporate the breaking of
contacts, the rigidity transition for frictionless, repulsive soft
disks in two dimensions is characterized by a spanning, planar
graph obeying both the Laman condition and the principle
of local mechanical stability (Hilbert stability). We call this
graph a “jamming graph.” The vertices in the graph represent
the particles, and since the bonds represent particle contacts,
the graph must be planar.

We would like to understand how such graphs obeying both
global and local rules of mechanical stability are constructed
in practice. It turns out that we will be able to do so using
an algorithm with spatially local moves. This is because
one can build a Laman graph via an algorithm called the
Henneberg construction [27]. The algorithm will be presented
in the following section. Therefore, we now explore the notion
of minimal rigidity in particle packings in two dimensions,
where the connectivity is not fixed and the forces exerted
above jamming are purely repulsive, by imposing both types
of mechanical stability.

III. ALGORITHM FOR BUILDING JAMMING GRAPHS

A. Henneberg construction

Let us review the Henneberg construction [27]. For con-
structing a Laman graph, we begin with a triangle and then add
a vertex and connect it to prior vertices using the Henneberg
steps type I and type II defined as follows:

(i) Type I step: Add a vertex and join it to two prior vertices
via two new bonds.

(ii) Type II step: Add a vertex and join it to three prior
vertices with at least one bond in between the three bonds.
Remove a prior bond between the three connecting prior
vertices.

See Fig. 3 for an illustration of the Henneberg construction.
A graph constructed using the Henneberg construction

is Laman [26]. We can see this via induction. Suppose the
current graph G is Laman with N vertices and 2N − 3 bonds.
For the type I step: Add vertex x. Graph G now contains
N + 1 vertices and 2N − 3 + 2 = 2(N + 1) − 3 bonds. For
any subgraph with n vertices, if it does not include x, by the
induction hypothesis, there are at most 2n − 3 bonds. If the

(i) (ii) (iii)

FIG. 3. (Color online) (i) Graph before the Henneberg step.

(ii) The type I step with the new bonds denoted with dashed lines.

(iii) Type II step.

subgraph includes x, for the other n − 1 vertices, there are at
most 2(n − 1) − 3 bonds between them, so in total there are
at most 2(n − 1) − 3 + 2 = 2n − 3 bonds.

For the type II step: Add vertex x and connect it to a, b, c.
Graph G now contains N + 1 vertices and 2N − 3 + 3 − 1 =

2(N + 1) − 3 bonds. For any subgraph with n vertices, if it
does not include x, by the induction hypothesis, there are at
most 2n − 3 bonds. If any subgraph includes x, for the other
n − 1 nodes, there are at most (i) 2(n − 1) − 3 bonds, if not
all of a, b, c are included, and (ii) 2(n − 1) − 4 bonds, if a, b,
c are all included.

In case (i), there are at most 2(n − 1) − 3 + 2 = 2n − 3
bonds. In case (ii), there are at most 2(n − 1) − 4 + 3 =

2n − 3 bonds. Thus, the Laman condition is satisfied. One
can also show that every Laman graph can be decomposed
into a Henneberg construction.

The Henneberg construction (and the corresponding Laman
theorem) is purely combinatorial. It only deals with adjacency
and not where the neighbors are located spatially. Because
bonds in the jamming graph represent contacts between
particles, we impose a planarity, or no-crossing condition, on
the bonds. Moreover, if Ng = 2, as opposed to Ng = 3, the
above Henneberg construction is unchanged.

B. Hilbert stability

We also invoke the local Hilbert stability condition for two-
dimensional packings, which states that any vertex should have
at least three neighbors, i.e., it is 3 − core, and the vertex
should be inside a triangle determined by at least three of its
neighbors [6]. To determine whether or not a vertex is enclosed
in a triangle by at least three of its neighbors, we implement an
algorithm based on the Jordan curve theorem [29]. It consists of
drawing a horizontal line from the vertex and determining how
many crossings the horizontal line makes with the enclosed
triangle. If there are an odd number of crossings, then the
vertex is inside the polygon as illustrated in Fig. 4.

C. Pseudocode

Graphs built by using Henneberg type II steps have typically
more counterbalanced vertices since the new vertex has
more neighbors in comparison to type I. So we build a
jamming graph implementing Henneberg type II steps only.
The graph must be planar and we implement periodic boundary
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FIG. 4. Illustration for checking if a particle is enclosed by a

triangle.

conditions on a square of length unity. We then enforce
the Hilbert stability condition on each vertex. Here is the
pseudocode of our algorithm.

(i) Create a triangle. The length of the bonds is chosen ran-
domly from the uniform distribution on the interval [rmin,rmax],
where rmin < rmax < 0.5. The triangle is a minimally rigid
k = 3, Ng = 3 structure.

(ii) Create a new vertex with random coordinates with
the constraint that no vertex be less than a distance rmin or
greater than a distance rmax from any other vertex and establish
its neighbors according to the type II Henneberg step. This
creation is successful if the new bonds are not overlapping any
of the surviving prior bonds (keeping in mind that a type II
Henneberg move implies the deletion of a prior bond).

(iii) Repeat the above step N − 4 times to create a planar
Laman graph with N vertices.

(iv) Check for those vertices that are not counterbalanced.
(v) For each vertex that is not yet counterbalanced, impose

the following set of strategies to enforce counterbalance. The
strategies differ depending on whether an uncounterbalanced
vertex has at least two neighbors or at least three.

(vi) Counterbalance strategies for a vertex with at least

three neighbors: Suppose uncounterbalanced vertex p has
neighbors n1, n2, and n3, as shown in Fig. 5. If p has more
than three neighbors, we apply the following strategy to each
set of the three different neighbors of p. Choose n2 such that
−→pn2 is inside the angle ̂n1pn3. Then choose a vertex x such

FIG. 5. Left: An uncounterbalanced vertex p with at least three

neighbors n1,n2,n3 is counterbalanced by creating bond px and

deleting bond pn3. Likewise, x is counterbalanced by finding z

such that x is inside triangle △zpn3, consequently creating bond xz.

Right: An illustration of different positions to choose an appropriate

neighbor x for uncounterbalanced vertex p. Values of β are chosen so

that most of the space contained in the angle determined by vectors
−→pn1 and −→pn2 is scanned.

FIG. 6. Uncounterbalanced vertex p is counterbalanced by find-

ing two connected vertices a and b such that the creation of vertex x

and bonds xp,xa, and xb causes x to be counterbalanced. Also, bond

ab is deleted.

that

−→x = −→n +
−→np

‖−→pn‖
α, −→n = β−→n1 + (1 − β) −→n2 , (2)

where α is equal to one-half the distance from p to its
closest neighbor and 0 < β < 1. To counterbalance p so that
it belongs to the triangle △n1n2x, x should be in the angle
determined by the vectors −→n1p and −→n2p. By choosing particular
values for β, for example β = 1

10
, 1

2
, 9

10
, most of the region

containing the angle is scanned as illustrated in Fig. 5.
New bonds xp, xn3, xz are created and the prior bond

pn3 is deleted. Note that the new bonds cannot cross any of
the prior ones. Then, a prior vertex z is chosen such that x

is counterbalanced, which means it should be in the striped
region in Fig. 5. If the above counterbalance strategy does not
work, move p toward n2 by a fraction of the length ‖−→pn2‖.
Once p is moved, the above strategy is tried again. If this
particular construction does not work, choose n to be between
n2 and n3.

(vii) Counterbalance strategy for a vertex with at least two

neighbors: Assume the situation depicted in Fig. 6, where p

is an uncounterbalanced vertex with neighbors n1 and n2. In
this case, create a new vertex x such that

−→x =
−→np

‖−→pn‖
α, −→n =

1

2
(−→n1 + −→n2 ). (3)

Then find two connected vertices a and b and create bonds xp,
xa, xb and delete the prior bond ab. This strategy is successful
if the new bonds do not cross any of the prior ones and if either
vertex a or b remains counterbalanced after deleting the bond
connecting it. It is important to note that one can apply this
strategy for a vertex with more than just two neighbors.

A few comments on the algorithm are in order. (i) The use of
rmin and rmax set the local neighborhood from which vertices
are connected. It is in this sense that the algorithm is local
spatially. (ii) We did not impose counterbalance during the
Laman construction because type II Henneberg steps delete
bonds so that a counterbalanced vertex at one point during
the graph construction may not be counterbalanced at some
later point in the construction. Of course, type I Henneberg
steps do not delete bonds, but then a sizable fraction of
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FIG. 7. (Color online) Left: Many small rigid clusters identified via color after the deletion of one bond or contact, namely the bond between

vertices 1 and 41 as numbered. The black dashed lines indicate bonds that are not rigid with respect to any other bond. Right: A “macroscopic”

rigid cluster along with a few small ones after the deletion of the bond connecting vertices 12 and 30.

uncounterbalanced vertices emerges, approximately 75%, as
compared to jamming graphs constructed using the type II
Henneberg steps, where approximately 50% of the bonds
are counterbalanced automatically. (iii) The algorithm begins
with a triangle, which is a 2N − 3 minimally rigid structure.
While periodic boundary conditions imply Ng = 2, local
structures that are the equivalent of the 2N − 2 minimally
rigid structure do not include single-bonded triangles. More
precisely, for N = 3, one connection between two vertices
must have a double bond. Since we begin the algorithm with
a local structure and build up the graph from there with
specific boundary conditions imposed for some fraction of
connections that decreases as N increases, we implement
Ng = 3. The Ng = 2 versus Ng = 3 for periodic particle
packings presumably accounts for why an extra contact is
needed for a positive bulk modulus. (iv) The jamming graph
is one connected structure, i.e., there are no rattlers. Rattlers
are usually removed by hand when studying elastic properties,
for example, since they do not contribute to the network. (v)
New vertices may be added to the jamming graph to enforce
the counterbalance property. We use N to denote the number
of vertices before counterbalance is enforced such that the
approximate number of final vertices is 3

2
N .

To compare the jamming graph algorithm with other
algorithms generating minimally rigid particle packings, such
particle-based algorithms range from minimization methods
[2] to adaptative network methods [30] to molecular dynamics
[31,32] to event-driven molecular dynamics [33]. When using
these approaches, the transition point, defined by the packing
fraction or the average pressure, can be protocol-dependent
[34–36]. Moreover, convergence issues exist [11]. Our al-
gorithm uses purely contact geometry to concretely define
the onset of jamming in frictionless spheres. Indeed, there
exist algorithms to generate generic disordered minimally
rigid graphs via a matching algorithm [37,38], where generic
means that the vertex coordinates are not related by any
symmetry. These graphs are not planar, nor is local mechanical
stability enforced. And finally, there exists a hybrid approach
where high-density particle packings are used to generated a

disordered hyperstatic graph [39]. Then, bonds are randomly
deleted from the graph until, for example, 〈z〉 = 4 is obtained.
There is a constraint on the random deletion, however, where
a bond is not deleted if the local coordination number of either
of the two associated vertices goes below 3, otherwise known
as the k-core condition [10]. However, both latter algorithms
do not necessarily enforce the geometry of local mechanical
stability.

IV. PERTURBING JAMMING GRAPHS

Now that we have an algorithm to construct jamming
graphs, we perturb these graphs to determine how the system
destabilizes (and restabilizes) mechanically. The destabiliza-
tion is studied via the identification of rigid clusters. A rigid
cluster defines those bonds that are rigid with respect to each
other. A rigid cluster is defined on the bonds, as opposed to
the vertices, because a vertex can belong to two different rigid
clusters, while bonds can be identified with only one rigid
cluster. The rigid cluster size s is defined as the total number
of bonds belonging to a rigid cluster. We then use the powerful
pebble game algorithm [40] to identify rigid clusters via an
additional test bond. By construction, the jamming graph is one
minimally rigid cluster. We now investigate how the jamming
graph destabilizes with the removal of one bond. Note that the
size of the rigid clusters is measured in terms of bonds and
not vertices.

A. One random bond deletion

The removal of one bond or contact creates exactly one
floppy mode such that every bond is no longer rigid with
respect to every other bond in the graph. In other words,
there must be at least two rigid clusters in the graph. In fact,
one can prove that there must be an even number of rigid
clusters. So, precisely how many pairs of rigid clusters are
there after one bond is randomly deleted? Many microscopic
rigid clusters with no rigid cluster of order the system size, or
at least one rigid cluster of order the system size coexisting
with microscopic sized rigid clusters? We define a rigid cluster
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FIG. 8. (Color online) Plot of Prob(s), the probability for a bond to participate in a rigid cluster of size s after one bond is deleted from the

jamming graph. The different graphs represent different system sizes.

occupying some large fraction of the bonds in the system
and to scale with the system size to be a macroscopic rigid
cluster. This macroscopic rigid cluster need not necessarily
span the system, though since it scales with the system size,
then it is likely too. Microscopic rigid clusters, on the other
hand, do not scale with the number of bonds in the system
The smallest minimally rigid cluster is a triangle. It turns out
that both scenarios are observed. See Fig. 7. And while both
scenarios occur, it turns out that the most common scenario is
the absence of at least one macroscopic rigid cluster when one
bond is deleted.

And while the survival of macroscopic rigid clusters after
one bond deletion is apparent in the systems studied, do
they persist in the large system limit? Figure 8 depicts the
resulting rigid cluster size probability distribution, Prob(s) for
N = 40, 80, 160, and 320. Note that the rigid cluster size is in
terms of bonds such that the rigid cluster sizes can be larger
than the initial vertex number N . Indeed, the probability of
observing a macroscopic rigid cluster after one bond deletion
decreases with increasing system size. To obtain a systematic
measurement, we compute the area under the characteristic
peak at the macroscopic rigid cluster sizes s, a#. See Fig. 9.
While the trend is not clearly power-law nor exponential, the
area, a#, is decreasing with N , suggesting that macroscopic
rigid clusters after one bond deletion vanish in the infinite
system limit. This possibility, while not as likely as the many
microscopic rigid clusters scenario, cannot be completely ruled

out yet in the infinite system limit, i.e., there is no mathematical
proof.

For the sake of argument, consider the graph in Fig. 10
[41]. Removal of the red dashed bond corresponds to each
bond not being rigid with respect to any other, or many rigid
clusters of size one. However, removal of one of the blue bonds
leaves the rest of the rigid structure unchanged (except for
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FIG. 9. (Color online) Plot of the peak area for the macroscopic

rigid cluster sizes, a#, as a function of N initial vertices. The dashed

line is merely a guide for the eye.
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FIG. 10. (Color online) Example graph where removal of the red,

dashed line leads to all remaining bonds not rigid with respect to each

other. The removal of any one blue line affects only its neighboring

blue bond. The rest of the graph is unaffected. The three black circles

denote repetition of the blue hinge bonds.

the one neighboring bond that is no longer rigid with respect
to any other bond). Depending on the bond that is deleted,
either scenario holds in the infinite system limit. And while the
specificity of this graph may not be useful for understanding
the generic case, extensions of such examples may indeed be.

In the system sizes studied, the two scenarios—(i) many
microscopic rigid clusters with no macroscopic rigid cluster
and (ii) at least one macroscopic, rigid cluster—can be related
to two different floppy modes. In the many microscopic rigid
clusters scenario, there is widespread breakup of the system.
For bonds between individual rigid clusters, there is zero-
energy cost to deforming those bonds such that if they are
replaced by springs, as is typically done when determining
vibrational modes, these bonds contribute to any zero-energy
modes. If these bonds extend across the system, as they do
in the case of many microscopic rigid clusters, then the zero-
energy mode is an extended one. In contrast, the presence
of at least one macroscopic rigid cluster translates to a more
localized zero mode since the deforming bonds within the
macroscopic rigid cluster will result in some energy cost.

Our finding is presumably related to the recent finding
of two kinds of instabilities due to the breaking of contacts
in a repulsive, frictionless particle packing at the onset of
rigidity [42]. In this work, two particles in contact are pulled
apart, i.e., a bond is deleted, and particle rearrangements driven
by instabilities are identified. There appear to be two kinds
of instabilities—one extended and the other localized. While
force information is assumed in this study, our work only uses
contact information.

In addition to the decrease in a# with increasing N ,
there is another trend in the probability distribution of rigid
cluster sizes as the system size increases. A suppression of
intermediate cluster sizes starts to emerge, i.e., a gap between
the microscopic and macroscopic rigid clusters emerges. There
exists an upper bound on the small rigid clusters that does not
change with increasing system size. Interestingly, Ref. [11]
argued for the absence of intermediate rigid cluster sizes when
introducing a surface of cut bonds into the system based on a
necessary, but not sufficient, condition for rigidity.

What does a system-size-independent upper bound on the
microscopic rigid cluster sizes imply about length scales?
Should the macroscopic rigid cluster scenario vanish in the
infinite system limit, a diverging length scale emerges in
the sense that going from one macroscopic rigid cluster to
many microscopic rigid clusters in the infinite system limit
corresponds to an infinite length associated with catastrophic
breakup of the one minimally rigid cluster.

How does our destabilization result for the jamming graph
compare with other minimally rigid graphs, ones where local
mechanical stability need not be obeyed as with typical rigidity
percolation models? To answer this question, we generated
minimally rigid graphs using the Henneberg type I move (see
Fig. 3), and we did not enforce local mechanical stability
(counterbalance) for each vertex. Therefore, we call these
graphs type I graphs. We then delete one bond randomly and
compute the resulting rigid cluster probability distribution.
See Fig. 11. As with jamming graphs, the resulting rigid
cluster distribution exhibits two scenarios—one with many
microscopic rigid clusters (and no macroscopic rigid cluster)
and another less typical scenario with at least one macroscopic
rigid cluster—demonstrating a similar trend to the jamming
graph case. These results, again, suggest that there are both
extended and localized zero-energy modes in a minimally rigid
system. However, for the type I graphs, the gap between the
macroscopic and microscopic rigid clusters does not emerge
as clearly as compared to the jamming graph at similar system
sizes.

This difference between between the jamming graph and
the type I graph could be due to the connectivity of the type I
graphs, which is less constrained than the jamming graphs.
See Fig. 12. In particular, the fraction of vertices with just two
bonds is about 59%. The removal of either bond removes the
possibility of that particular vertex participating in any rigid
cluster of at least size 3, while for the jamming graph, the
removal of a bond does not prevent the neighboring vertex of
now two or more neighbors from taking part in another local
rigid cluster. In other words, the rigid cluster structures are not
as local as in the jamming graph, such that one may have to
go to much larger system sizes to observe a gap in the rigid
cluster sizes. Interestingly, Goodrich and collaborators [11]
did not observe a sudden loss of rigidity for a subsystem size
below some length scale for bond-diluted hexagonal lattices—
a standard model for two-dimensional rigidity percolation—
where vertices of coordination number 2 are allowed. As with
type I graphs, it may be that one must go to much larger system
sizes to see a gap emerge.

Also, note that the coordination number distribution for
the jamming graphs exceeds 6 (Fig. 12). Indeed, the kissing
number for a monodisperse disk packing is 6, and it is 12
for a three-dimensional monodisperse sphere packing. In the
repulsive soft disk simulations, the size distribution is typically
bidisperse (two sizes), where the ratio of the two radii is
1.4 so as to obtain disordered packings [1,2]. However, one
also obtains a jamming transition with a polydisperse size
distribution. The polydispersity would alter the upper bound
of the coordination number distribution, which is nonuniversal,
but it would not alter the important universal properties of an
average coordination number of 4 and that each particle is
enclosed by a triangle by at least three of its neighbors at
jamming.

After deleting one bond, let us briefly discuss how the
system restabilizes mechanically (or not) with the random
addition of one bond. If the added bond is within one
rigid cluster, then the bond is redundant and the graph does
not restabilize mechanically. However, if the added bond is
between two rigid clusters, then it is an independent constraint
such that the graph becomes minimally rigid and, therefore,
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FIG. 11. (Color online) Plot of Prob(s), the probability for a bond to participate in a rigid cluster of size s after one bond is deleted from

the minimally rigid graphs generated by Henneberg type I moves only. The different graphs represent different system sizes.

must restabilize mechanically, i.e., there is only one rigid
cluster. In terms of a length scale affected by the perturbation, if
the destabilized system is made up of many microscopic rigid
clusters, the length scale affected by the perturbation is of order
the system size, i.e., it is infinite in the infinite system limit,
since the system goes from many microscopic rigid clusters to
one macroscopic rigid cluster with the addition of one bond.

B. Hyperstatic: Randomly adding and deleting

more than one bond

We begin with a jamming graph and randomly add some
number of bonds, A. The graph is no longer minimally rigid,
i.e., it is now hyperstatic. This action allows us to study systems
that are “above” jamming where the macroscopic rigid clusters
survive at least one bond deletion. We can then randomly delete
(different) bonds from this hyperstatic graph and investigate
how the system destabilizes mechanically. We may then be
able to identify a length scale that decreases from the system
size at jamming to some length scale smaller than the system
size as a result of randomly deleting D bonds.

For a concrete example, consider adding eight redundant
bonds to a jamming graph with N = 40. For 100 000
realizations, the random removal of one bond does not create
more than one rigid cluster, i.e., the system is still rigid
globally. The random removal of two bonds creates a few
small rigid clusters in addition to the macroscopic rigid cluster
with a gap in between. See Fig. 13. When three bonds are

randomly removed, however, we observe more of a qualitative
change in the rigid cluster size distribution. The gap between
microscopic rigid clusters and macroscopic rigid clusters
closes. The concept of a single system with microscopic rigid
clusters distinct from macroscopic rigid clusters no longer
makes sense. We are now beginning to observe the extended
breakup of the system. The gap size just before the extended
breakup sets a size scale, s#. This size scale can be easily
converted to a length scale via s# ∼ (l#)2 in two dimensions
(assuming compactness).

How does s# scale with N and with distance to the rigidity
transition? We define ǫ = A

N
to describe the distance to the

transition. More specifically, since 〈z〉 = 2
Nf

(2Nf − 3 + A),

with Nf representing the final number of vertices in the graph
after counterbalancing, then

〈z〉 − 4 +
6

Nf

=
4

3
ǫ, (4)

where we have included the 1/Nf correction in the location of

the transition [26,43] and used N
Nf

= 2
3
. For fixed ǫ, we observe

that s# increases with increasing N until it begins to reach a
plateau that is independent of system size. We also observe
that as ǫ decreases, s# increases, though it will ultimately be
cut off by the system size. In other words, s# is behaving as a
size scale near a critical point. See Fig. 14.

To test this hypothesis, we measure s# as a function of
ǫ for several system sizes and attempt finite-size scaling via

062130-8



JAMMING GRAPHS: A LOCAL APPROACH TO GLOBAL . . . PHYSICAL REVIEW E 88, 062130 (2013)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

coordination number z

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
ro

b
(z

)

Jamming graph

0 2 4 6 8 10 12 14 16 18 20 22 24

coordination number z

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
ro

b
(z

)

Type I graph

FIG. 12. (Color online) Plot of Prob(z), the probability for a site to have z neighbors, for the jamming graphs (left) and the graphs generated

using Henneberg type I moves (right). For both plots, N = 40.

the following route. Let l ∼ ǫ−ν , where l is some underlying
diverging length scale in the system. If the observed diverging
length scale, l#, is due to the underlying diverging length scale,
then l# ∼ ǫ−ρ such that

l# = lρ/νf (l1/νǫ), (5)

with f (y) as some universal scaling function. For the cut-
out subsystem analysis with either free or fixed boundary
conditions, ν = 1. If we assume this and set ρ = ν, then we do

not obtain a good scaling collapse. A more recent discovered
diverging length scale, lc, associated with the localization of
phonon modes in floppy networks, results in ν = 1/2 [17,44].
If we again assume ρ = ν, we do not obtain a good scaling
collapse. We also tried the two remaining combinations of
ν = 1, ρ = 1/2 and ν = 1/2, ρ = 1 and we did not obtain a
good collapse. However, with ν = 1/3 and ρ = 1/2, we do
obtain a good scaling collapse. See Fig. 14. While these data
are suggestive of perhaps a new diverging length scale in the

10
0

10
1

10
2

Rigid cluster size s

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
ro

b
(s

)

N=40, A=8, D=2

s
#

10
0

10
1

10
2

Rigid cluster size s

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
ro

b
(s

)

N=40, A=8, D=3

10
0

10
1

10
2

10
3

Rigid cluster size s

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
ro

b
(s

)

N=320, A=4, D=3

10
0

10
1

10
2

10
3

Rigid cluster size s

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
ro

b
(s

)

N=320, A=4, D=4

FIG. 13. (Color online) Plot of Prob(s), the probability for a bond to participate in a rigid cluster of size s after A bonds are randomly added

to the jamming graph and then D bonds are randomly deleted. Two different system sizes are shown.
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system associated with point perturbations via ν = 1/3, this
possibility may be ruled out by the study of larger system sizes.

It is interesting to note that mean-field correlation length
exponents of 1/4, 1/2, and 1 exist in disordered systems
[8–10,17,44], while a correlation length exponent of 1/3 is
presumably less common. Incidentally, while ν = 1/4 (and
ρ = 1/2) is not as good a collapse as with ν = 1/3, it
cannot be ruled out at this stage. However, we can conclude
that ν = 1,1/2 and/or ρ = 1,1/2 does not lead to sufficient
collapse for at least the system sizes we study.

V. DISCUSSION

We have presented an algorithm for the spatially local
construction of jamming graphs. Jamming graphs represent
the contact geometry of frictionless, repulsive soft disks in two
dimensions at the onset of mechanical rigidity. In other words,
they contain both the property of local mechanical stability
and the necessary and sufficient condition for minimal rigidity
via the Henneberg construction. Since the bonds represent
contacts between particles or vertices, the jamming graph is
planar. Varying the construction of these (and related) graphs
allows us to turn on (off) different properties of particle
packings at (near) the onset of rigidity in a controlled way
to ultimately form a more concrete and comprehensive picture
of jamming.

Our construction of jamming graphs begs at least three
immediate extensions of study. For the first extension, if one
associates a disk with each vertex and each bond dictates the
contact between two disks, then we can potentially analyze the
question of whether there exists a unique packing fraction at
the onset of rigidity in the infinite system limit [2,34,45–47].
Indeed, there have been a number of different definitions
of the onset of jamming ranging from the random closed
packing (RCP) point [2,48] to a maximally jammed state [45]
to a jamming line [46,47]. To address this issue, we can
create a physical realization of disks from a jamming graph
using the circle packing theorem [49]. The circle packing
theorem states that for every connected simple planar graph
G, there exists a circle packing in the plane whose intersection
graph is isomorphic to G. There are more strict conditions
for uniqueness as such, and these will be explored. Note

that to more readily associate a jamming graph with a disk
packing, we will allow for a polydisperse size distribution of
disks. While we can immediately explore this issue in two
dimensions where Laman’s theorem is exact and the circle
packing theorem holds, it would be interesting to extend the
jamming graph to three dimensions and higher. It turns out
that the three-dimensional version of Laman’s theorem for
some networks is essentially exact [50]. Higher-dimensional
extensions of the circle packing theorem would indeed be more
challenging.

As for the second immediate extension, with jamming
graphs we can search for an interplay between global
mechanical stability and local mechanical stability since
we can easily turn off or on local mechanical stability.
This on-off switch allows us to compare the mechanics of
fixed connectivity networks from rigidity percolation [20,21]
with repulsive particle packings [14,17,39,51]. While local
mechanical stability may not play as much of a role at the
transition (other than suppressing fluctuations [9]), it will
certainly play a role in particle rearrangements above jamming,
where local mechanical stability is also required. For instance,
if particle chains form as a result of some perturbation, the
chain should buckle so that particles having two contacts will
ultimately have at least three contacts with the appropriate
geometry. Such particle rearrangements above jamming can
also be studied using jamming graphs with the removal and
addition of bonds. For instance, if the breaking of a contact
results in a vertex not being counterbalanced, with some
added force information [42,52–54], a sequence of moves can
be generated to regain the local mechanical stability while
ensuring that the graph remain hyperstatic.

For the third immediate extension, local rules governing
a system may lead to a field theory, should one exist. And
while there is not necessarily a consensus on a field theory
for jamming [55,56], our spatially local construction of the
jamming graph may provide insight for building a modified
field theory for a system with both local and global constraints.
Such a framework may accelerate the quest to determine
how to classify the various constraints in terms of potentially
different universality classes. For instance, enforcing only the
local k-core constraint leads to one type of phase transition,
while the counterbalance constraint leads to another [10,57].
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And while such attempts are not currently appreciated in
the field, a classification system based on constraints will
ultimately emerge.

For instance, the notion of constraints changes when one
deviates from frictionless, repulsive soft disks. Ellipsoidal
particle packings may or may not be isostatic at the onset
of rigidity, depending on which degrees of freedom can be
accessed [58,59]. It turns out that one can also extend Laman’s
theorem in two dimensions to systems with other degrees
of freedom [28] and, correspondingly, extend the Henneberg
construction. Such an extension of the jamming graph may,
therefore, prove useful for understanding the onset of rigidity
for nonspherical particles. As for frictional systems, while
the history of the contact information may be difficult to
incorporate into an equivalent jamming graph, one can extend
the pebble game [to a (3,3) pebble game] to map out the rigid
clusters of frictional packings to compare with frictionless
packings [60]. These endeavors (and others) will help form
a concrete framework for the onset of rigidity in disordered
systems.

After constructing these jamming graphs, the deletion of
one bond allows us to study how the system destabilizes. In
the system sizes studied, there exist two scenarios, one in which
the removal of the bond leads to catastrophic collapse of the
single rigid cluster with many microscopic rigid clusters (an
extended zero-energy mode), and the other in which at least
one macroscopic rigid cluster survives (a localized zero-energy

mode). As the system size increases, the probability of the
localized zero-energy mode decreases. It would be interesting
to prove whether this probability vanishes in the infinite system
limit. Particularly in two dimensions, there is a wealth of
mathematical literature on minimal rigidity to potentially go
beyond heuristic arguments and numerics.

As opposed to uncovering a diverging length scale in
surface versus bulk effects [8,9,11,12,14], we have potentially
uncovered a new diverging length scale in the rigid phase in
response to random bond deletion. With a correlation length
exponent close to 1/3, it appears that this new length scale
is not related to the introduction of a force monopole in the
particle packings [16]. However, once forces are introduced,
and/or the contact geometry is allowed to rearrange as the
system responds to the point perturbation, then one should
presumably obtain the prior result. Again, the ability to
build upon the jamming graph by incorporating further detail
bit-by-bit will allow us to identify the properties ultimately
dictating a particular behavior or response.
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[35] D. Vågberg, D. Valdez-Balderas, M. A. Moore, P. Olsson, and

S. Teitel, Phys. Rev. E 83, 030303(R) (2011).

[36] S. Dagois-Bohy, B. P. Tighe, J. Simon, S. Henkes, and

M. van Hecke, Phys. Rev. Lett. 109, 095703 (2012).

[37] C. Moukarzel, J. Phys. A 29, 8079 (1996).

[38] C. Moukarzel, Europhys. Lett. 97, 36008 (2012).

[39] W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos, and

M. van Hecke, Europhys. Lett. 87, 34004 (2009).

[40] D. J. Jacobs and B. Hendrickson, J. Comp. Phys. 137, 346

(1997).

[41] This example was pointed out to us by Brigitte Servatius.
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