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Recent observations demonstrate that confluent tissues exhibit

features of glassy dynamics, such as caging behavior and dynamical

heterogeneities, although it has remained unclear how single-cell

properties control this behavior. Here we develop numerical and

theoretical models to calculate energy barriers to cell rearrangements,

which help govern cell migration in cell monolayers. In contrast to

work on sheared foams, we find that energy barrier heights are

exponentially distributed and depend systematically on the cell's

number of neighbors. Based on these results, we predict glassy two-

time correlation functions for cell motion, with a timescale that

increases rapidly as cell activity decreases. These correlation functions

are used to construct simple randomwalks that reproduce the caging

behavior observed for cell trajectories in experiments. This work

provides a theoretical framework for predicting collective motion of

cells in wound-healing, embryogenesis and cancer tumorogenesis.

Introduction

Many important biological processes, including embryogen-

esis,1,2 wound healing,3,4 and tumorigenesis,5,6 require cells to

move through tissues.

While numerous studies have quantied cell motility by

analyzing isolated cells in controlled environments,7,8 recent

work has highlighted that cell motion in densely packed tissues

is collective, and very different from isolated cell motion. In

densely packed or conuent tissues (no gaps between cells)

researchers have discovered signatures of collective motility

such as dynamical heterogeneities9,10 and caging behavior.11

These signatures also occur in many glassy non-biological

materials, including polymers, granular materials, and foams.12

They can be understood in terms of the potential energy

landscape, which species the total potential energy of a

material as a function of the positions of all the degrees of

freedom, such as the particle positions. A glassy material

spendsmost of its time close to amechanically stable minimum

in the potential energy landscape, but rare uctuations can

overcome the high energy barriers and allow the material to

escape to a new minimum. These collective, rare uctuations

typically involve a particle escaping from a cage generated by its

neighbors.

Inactive materials such as dry foams are jammed at conu-

ence. Therefore, individual elements do not change neighbors

unless a sufficient external force is applied at the boundaries.

Much effort has focused on understanding these rearrange-

ments that occur when energy is injected globally; they tend

to occur at special weak regions or so spots in the material13

and the energy barriers to rearrangements are power-law

distributed.14

Even in the absence of external forces, cells in conuent

tissues regularly intercalate, or exchange neighbors.15 They

actively change their shapes and exert forces on contacts to

overcome large mechanical energy barriers and transition from

one metastable state to another. Because energy is injected

locally, instead of globally at the boundaries, we hypothesize

that the statistics of energy barriers explored by cells might be

very different from those in inactive materials. The fact that

glassy dynamics are observed in conuent tissues suggests that

cell migration rates are governed by these energy barriers. In

other words, cell motility in tissues is set not by single-cell

migration rates but instead by the rate at which cells can

squeeze past neighbors.

There is no existing theoretical framework for predicting cell

migration rates in conuent tissues. Although several recent

particle-based models for collective cell motion show signatures

of glassy dynamics,16,17 these break down at conuence and do

not capture changes to cell shapes that occur during

intercalation.

In this Communication, we develop a framework for pre-

dicting cell migration rates in tissues by rst calculating energy
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barriers to cell rearrangements. We nd that the distribution

of energy barriers for local rearrangements is exponentially

distributed, which is precisely the distribution required for

glassy dynamics in non-active matter,18 and different from that

observed in foams. Our simulation and model also predict that

the height of the energy barriers depends systematically on the

topology of cell neighbors in the vicinity of the rearrangement.

We utilize the ‘trap’model18 and an extension of the So Glassy

Rheology (SGR) model19 to convert our results for energy barrier

distributions to testable predictions for cell migration, including

waiting times and two-time correlation functions. Finally, we

carry out a minimal random walks based on these two-time

correlation functions which capture caging andmigration of cells

and make qualitative comparisons to experiments.

Shape equilibrium or vertex models have been successfully

used to predict the minimum energy shapes of 2D cross-

sections 3D cells in conuent tissues.1,20–22 These models

develop an equation for the mechanical energy of a cell,

U i ¼ xPi
2 þ gPi þ bðAi � A0Þ2; (1)

where Pi and Ai are the perimeter and area of the cell. Coarse-

grained mechanical properties of single cells that inuence cell

shape, which are discussed in ref. 1 and 23, include cortical

elasticity, cortical surface tension, bulk incompressibility, and

cell–cell adhesion. The term quadratic in the perimeter

accounts for the elastic contractility of the actomyosin based

cortex, with modulus x. An effective ‘line tension’ g couples

linearly to the perimeter. g can be negative or positive and

represents effects due to cell–cell adhesion and cortical tension.

The last term quadratic in the area accounts for the bulk elas-

ticity and additional cell–cell adhesion effects.20

Quantities in eqn (1) can be non-dimensionalized by an

energy scale bA0
2 and a length scale

ffiffiffiffiffi

A0
p

:

utissue ¼
X

i

ui; ui ¼ kpi
2 þ 2kp0pi þ ðai � 1Þ2; (2)

with k ¼ x/(bA0) and 2kp0 ¼ g/(bA3/20 ).

This mechanical energy functional has been remarkably

successful in predicting cell shapes in embryonic tissues1,21 and

it allows for anisotropic interactions between cells. Although a

few researchers have used these models to investigate cell

growth and division,1,20 they have not been used to make

predictions about cell migration.

Standard methods24 were used to generate a random 2D

pattern of N points, which was then mapped to a packing of N

polygons with periodic boundary conditions via Voronoi

tessellation. The program Surface Evolver25 was used to nd the

nearest local minimum of eqn (2) via a steepest descent

algorithm.

Under conuent conditions, cells can only rearrange via T1

topological swaps, as illustrated in Fig. 1. Although cell division

and death can lead to uid-like behavior,26 these are not

necessary for cell migration2,11 and therefore we study cell

packings in the absence of these processes. To induce a T1

transition at an edge, the total energy is minimized while the

length of the edge ‘a is actively decreased from La until the edge

reaches zero length. Such processes are common during planar

junction remodeling in epithelial layers.15 A topological swap

takes place at ‘a ¼ 0. The new edge is actively increased to a

length La and then allowed to relax to its nal unconstrained

minimized state. Except for this T1 transition, the topology of

the network of vertices and edges remains xed. We have also

studied systems where passive energy-minimizing T1 transi-

tions are allowed in addition to the active T1 transition, and this

does not change any of the results reported below.27

Fig. 1 shows the total energy of the system as a function of

the edge length during a typical T1 transition. The length ‘a is

displayed as a negative number before the T1 transition and

positive aer the T1 transition. The energy barrier for this

process DuAB is dened as the minimum energy required to

escape state A towards another stable state C. Statistics ofDu are

collected by testing the T1 transition path on six randomly

generated tissues each consisting of N ¼ 64 cells. For all cells in

a tissue, we set the parameters such that the minimal shape for

each cell is a regular hexagon of area 1: k ¼ 1 and p0 z 3.722.

The distribution of energy barriers r(Du) of these transitions is

shown in Fig. 2(b). The tail obeys an exponential distribution:

r(Du) f e�cDu/hDui ¼ e�Du/30, (3)

where tting has determined c¼ 1.18 and we dene 30 ¼ hDui/c.
This exponential distribution is robust to changes in model

parameters k, p0, cell-to-cell variations (A0 / A0i) and the

method we use to initialize cell locations.27 Our data suggests

that the exponential tails ultimately arise from an interplay

between the statistics of edge lengths and the energy functional.

Although the initial T1 edge lengths La are Gaussian distrib-

uted, we nd that the change in energy due to a reduction in cell

perimeter is quadratic in La, resulting in an exponential distri-

bution for energy barriers.

Fig. 1 A T1 transition and its typical energy profile from our simulation.

Cells E1 and E2 share an edge before the T1 and become disjoint after

the T1, while S1 and S2 are disjoint before the T1 and share an edge

after the T1. The energy increases as the edge separating cells S1 and

S2 decreases in length, and reaches a maximum at length zero. A T1

swap takes place and then the energy decreases as the edges sepa-

rating E1 and E2 grows in length. The energy differenceDuABmarks the

height of the energy barrier associated with this transition.

1886 | Soft Matter, 2014, 10, 1885–1890 This journal is © The Royal Society of Chemistry 2014
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Whereas simulations of sheared foams generically generate

power-law distributed energy barriers with an exponential

cutoff,14 exponential energy barriers appear to be a unique

feature of conuent tissues where energy is injected locally. This

is intriguing because it is precisely the distribution seen in

glassy systems with quenched disorder.18

In ref. 28 it was shown that the ground state of eqn (2) forms

an ordered hexagonal lattice. However, cells in a biological

tissue vary signicantly in their number of neighbors or contact

topologies,29 giving rise to a highly degenerate set of metastable

states. The T1 transitions explore these metastable states and

we nd an interesting dependence of the energy barrier heights

on the local contact topology of cells involved. As depicted in

Fig. 1, cells S1 and S2 both gain one neighbor while E1 and E2

lose one neighbor each aer the transition. To quantify the

dependence of the energy barrier heights on the local topology,

we capture the local topology of four cells with themeasure QS¼
(6 � ZS1) + (6 � ZS2) where ZS1 and ZS2 are the number of

neighbors for cells S1 and S2.‡ Higher values of QS correspond

to S1, S2 pairs with fewer neighbors. Aer a T1 transition, QS is

always reduced by 2. In Fig. 2(c) the energy barriers are cate-

gorized by their pre-T1 QS values. Du decreases monotonically

with increasing QS and becomes vanishingly small when QS ¼ 2

(which becomes a QS ¼ 0 state aer a T1 transition). This hints

that the hexagonal conguration (all Z0s ¼ 6) is not only the

energetically preferred state, but congurations further away

from the ground state also have higher energy barriers.

We observe that during a T1 transition most of the change in

energy is localized to the four cells S1, S2, E1 and E2 that

participate. Based on this observation, we develop a simple

mean-eld model, which considers all four cells involved in a T1

transition to be initially regular polygons of equal edge length

‘ ¼
ffiffiffi

2
p

=33=4z0:62. We allow only the coordination of S1 and S2

to vary independently, and set ZE1 ¼ ZE1 ¼ 6, the average value

required by the Gauss–Bonnet theorem. The total energy for the

four cells can be calculated for the transition path, yielding a

generic prole for the energy leading up to the T1 transition,

shown by the black line in Fig. 2(a), that is remarkably similar to

simulation results. The mean-eld model also predicts the

energy barrier height Dumf as a function of the topology of the

cells involved, as shown by red dotted line in Fig. 2(c). With no

tting parameters, the mean-eld model correctly predicts the

magnitude of the energy barrier and the observation that lower

topological measures have higher energy barriers, although it

does not t the shape of the simulation curve. This suggests the

shape of this curve is due to nontrivial local correlations

between cell shapes.

To go from energy barrier distributions to cell migration

rates, we explore two of the simplest models to demonstrate

that the observed energy barrier distribution generically yields

glassy behavior, as measured by the time one has to wait to see a

cell change its neighbors. In conuent tissues, cell migration

rates are then proportional to neighbor exchange rates.

In traditional statistical mechanics, the rate at which a near-

equilibrium system transitions from one metastable state to

another is described by an Arrhenius process,

R ¼ u0e
�DuAB/3, (4)

where DuAB is the energy barrier separating two metastable

states A and C (Fig. 1), u0 is an inherent escape attempt

frequency and 3 ¼ kBT is the scale of energy uctuations.

While the assumptions on which eqn (4) is based do not

necessarily hold in biological tissues, analogues to parameters

u0, DuAB and 3 exist in cells and likely govern cell motility.

Several successful tissue models have characterized the cell

activity using an effective temperature 3 estimated from

membrane ruffling.30 Both 3 and the rate at which cells attempt

to cross barriers u0 are correlated with cell protrusivity and

active shape uctuations, which are determined in large part by

the cell's individual biochemical makeup. For simplicity, we

assume that u0 and 3 are single-cell properties that are constant

throughout the tissue, although other choices are possible and

would be interesting directions of future study. In contrast, the

distribution of energy barriers, r(Du), is clearly a collective

property determined by cell–cell interactions and the geometry

of cell packing inside the tissue, as described in the previous

section.

We rst use a simple ‘trap’ model for glasses18 to predict

waiting times for cell migration. In the trap model, a competi-

tion between r(Du) and the Arrhenius rate (eqn (4)) that samples

Fig. 2 (a) The energy trace shows a universal behavior, as shown by

the collapse of numerical results (colored thick lines) onto one curve

which is predicted by themean-fieldmodel. (b) Probability density on a

semi-log plot illustrates the exponential distribution of energy barriers.

The dashed line is an exponential fit with a slope of �1.18. (c) The

dependence of barrier heights on the contact topology of the

underlaying cells. A histogram (p(QS, Du)) of energy barrier heights is

shown at each value of the pre-T1 topological measure QS. Higher

values of QS correspond to S1, S2 pairs with fewer neighbors. The

average values are represented by the black curve. p(QS, Du) exhibits

exponential tail for the range of QS shown here. The black solid line is

the average value of Du and the red dotted line is the meanfield

theoretical prediction with no fitting parameters. The overall distri-

bution p(Du) (black histogram on right of figure) is obtained by

convolving p(QS, Du) with the distribution of topological measures

f(QS) (red histogram on top).

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 1885–1890 | 1887
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this distribution18 determines the dynamics. For tissues where

r(Du) has an exponential tail (eqn (3)), the distribution of the

average time ~t spent in a metastable state is given by:18

f(~t) f ~t
�3/30, (5)

where ~t ¼ R�1 is the inverse of the Arrhenius rate (eqn (4)).

When 3 < 30, eqn (5) cannot be normalized, this means the

system cannot relax to an equilibrium state, resulting in solid-

like glassy behavior.

For 3 > 30, one can calculate the two-time correlation function

Ctrap(0, t), which is the probability for a cell to rearrange aer

spending time t in a state. In Fig. 3(a), Ctrap(0, t) exhibits glassy

or caging behavior at short times, but decays to zero at longer

times, indicating uid-like behavior. The time scale of this

relaxation behavior depends on 3. We can dene a caging time

as the value of s such that Ctrap(0, s) ¼ e�1. As a 3 / 30, the

system approaches a glass transition and s(3) diverges, as shown

by the black solid line in Fig. 3(b).

We next augment this simple model to account for an

additional feature of single-cell motility: single cells on

substrates tend to move along the same direction for long

periods of time due to polarization of the mechanical compo-

nents that generate traction forces.31,32 This directed motion has

been shown to be important in other models for embryonic

tissues11 and occurs in addition to the random uctuations

induced by changes to the cell shape that are modeled by 3.

Therefore we include directed cell motion in an SGR-like

framework.19

We use the energy barrier height Du to label the state of a T1

four-cell region (see Fig. S2†). We model self-propelled, directed

motion by assuming the cell by assuming that the cell actively

increases the system's potential energy at a constant rate b. At

time t, then the effective barrier height Du � bt. There is also a

nite probability for it to undergo a rearrangement due to

non-directed uctuations in its shape; we describe this as an

activated process controlled by a temperature-like parameter

3.30 Then the rate for overcoming a barrier at time t can be

written as:

R ¼ u0e
�(Du�bt)/3. (6)

Aer escaping a trap with the rate given in eqn (6), the T1

four-cell region enters into a new trap chosen from the distri-

bution r(Du) as given by eqn (3).

Simple extensions of the SGR analysis19 can be used to derive

Ctrap(0, t), which is again the probability for a cell to rearrange

aer spending time t in a state. Similar to the trap model, a

caging time s can be dened. As shown by the colored lines in

Fig. 3(b) adding a polarization energy b decreases the caging

time; in the limit of b / 0, the SGR model becomes the trap

model (a full contour plot of s(3, b)) is also shown in Fig. S3.† In

Fig. 3(b) (inset), we show that as a function of increasing b and

constant 3, the caging time has a power-law decay.

One possible way of implementing the trap model and

comparing to direct experimental results of cell motility is to

carry out a randomwalk using the two-time correlation function

Ctrap(0, t). First, at each time step, the state of a cell is deter-

mined by drawing a random state according to Ctrap(0, t): it is

either caged with probability Ctrap(0, t) and takes a small step

chosen from a c2 distribution or it migrates with probability 1�
Ctrap(0, t) and takes a larger step chosen from a Gaussian

distribution. In Fig. 3(c) we show the mean squared displace-

ments of these random walk tracks near the glass transition.

Cells are caged at small time scales and diffusive behavior

dominates at longer times; the transition between the two

regimes occurs at the time s(b, 3) (Fig. 3(b)). To better demon-

strate cage breaking, we also analyzed the non-Gaussian

parameter a2 (ref. 11) for these random walks as shown in

Fig. 3(d). The peaks in a2 also coincide with the average time of

cage breaking events, directly set by s(b, 3). As the glass transi-

tion is approached at 3 / 30, the peak shis further to larger

times, demonstrating a slowing down of dynamics in the

system. Similar mean-squared displacements and non-

Gaussian parameters have been seen in three-dimensional

zebrash embryos11 and 2D epithelial sheets,33 suggesting that

our simple model can explain those glassy features.

Both the trap and SGR-like models suggest that the energy

barrier distribution we found in our simulations can lead glassy

cell dynamics, and that waiting times for cell migration increase

as the average barrier height (parameterized by 30) decreases.

Discussion and conclusion

We have simulated conuent tissue monolayers and numeri-

cally calculated the energy barriers required for cell rearrange-

ments. We show that the distribution of energy barriers, r(Du),

is exponential and that Du depends on a cell's number of

Fig. 3 (a) Two-time correlation functions for 3/30 ¼ [2.00, 1.10, 1.32,

1.06, 1.02] in the trap model. As 3 / 30, the correlations persist for

increasingly long times, leading to glassy behavior. (b) Colored lines are

the caging time s in the SGR model. In the limit b/(u03) / 0, the SGR

model becomes the trap model (thick black line). Inset: s as a function

of b/(u030) at 3/30 ¼ 1.1 (black dashed line in the main figure). (c) Mean

squared displacement for a random walk where the step sizes are

determined by the two-time correlation function Ctrap(0, t). Here we

have used b/(u030) ¼ 0.01 and 3/30 values ranging from 1.001 to 1.01.

The solid red line indicates slope 1. (d) Non-Gaussian parameter a2
(described in text) for randomwalk tracks shown in (c). a2 first rises to a

peak that coincides with the caging time s(3, b) and decays to 0 as the

system becomes diffusive. a2 ¼ 0 means diffusive behavior.

1888 | Soft Matter, 2014, 10, 1885–1890 This journal is © The Royal Society of Chemistry 2014
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neighbors in a monolayer tissue. Building on these results, we

show that two minimal models19 predict glassy dynamics, as

measured by temporal correlation functions and waiting times,

and a simple random walk based on these statistics reproduces

features seen in experiments on conuent tissues.

It should be possible to test these predictions in experiments

on conuent monolayers. Both the models predict that cell

migration rates increase as the energy barriers decrease.

Therefore, Fig. 2(c) predicts that cells are more likely to change

neighbors if they are in regions with high topological measure

(lower number of excess neighbors for S1 and S2). Although it is

difficult to track cell membranes in conuent tissues, one could

estimate cell topologies by taking a Voronoi tessellation of

nuclei positions, and directly test this prediction.

Furthermore, both models make predictions about two-time

correlation functions, which could be studied experimentally by

looking at the decay in the overlap between a cell's initial and

current Voronoi areas as a function of time.34 One could

decrease cell activity by adding drugs such as blebbistatin, and

compare directly to eqn (6). In addition, there is a large-scale

cutoff for the exponential tail in our simulations which corre-

lates with the largest edge length in the tissue. This suggests

that in real tissues we should always expect expect the two-time

correlation function to decay to zero provided one waits long

enough.

Here we only model the simplest transition path leading to a

T1 transition by shortening (and subsequently growing) the

edges between cells. Realistically, the transition path can be

more complicated. For example, protrusions can bemade as the

cell establishes new integrin bonds with the substrate, devel-

oping more complicated patterns such as rosettes.15 We have

studied a few such pathways using Surface Evolver and nd that

they generically cost more energy, though a more systematic

study is needed. In addition, we could analyze experimental cell

shapes during T1 events to determine which transition path-

ways the cells actually take, and estimate the transition barrier

across those pathways in silica.

For simplicity, our models and simulations make several

assumptions about cell activity and dissipation, which should

be checked and modied if necessary. For example, we assume

that dissipative processes, such as the actin network being

remodeled by myosin, are not strongly dependent on cell

shapes/geometry and therefore we neglect them in our energy

functional. This could be checked using two point micro-

rheology, and the model could be modied accordingly. Simi-

larly, we have assumed that the rate at which cells attempt to

cross energy barriers u0, is also not geometry dependent.

However, since mechanosensing machinery inuence cell

polarization35 it is possible that local cell shapes systematically

affect attempt frequencies, and this would be an interesting

avenue of future research. Furthermore, our model postulates

that the single-cell mechanical parameters k, p0 are indepen-

dent of the activities b and 3, but that is an assumption that we

intend to relax and study.

Finally, in writing down trap and SGR models, we have

implicitly assumed that the dynamics of cell monolayers are

dominated by the potential energy landscape (like a

supercooled liquid or glass), in contrast to a higher temperature

normal liquid where rearrangements can happen anywhere and

are not strongly constrained by the potential energy landscape.

This assumption is justied by the observations of caging

behavior and dynamical heterogeneities, but also by the

microscopic observation that cell structures are close to that

predicted by eqn (2),23 and transition between these near-

equilibrium states quickly compared to the waiting times they

spend in each state.11 Quantifying these transition times in

experiments (in addition to the waiting times) would therefore

be very useful.
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