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Hyperbolic lattices interpolate between finite-dimensional lattices and Bethe lattices, and they are interesting
in their own right, with ordinary percolation exhibiting not one but two phase transitions. We study four constraint
percolation models—k-core percolation (for k = 1,2,3) and force-balance percolation—on several tessellations
of the hyperbolic plane. By comparing these four different models, our numerical data suggest that all of
the k-core models, even for k = 3, exhibit behavior similar to ordinary percolation, while the force-balance
percolation transition is discontinuous. We also provide proof, for some hyperbolic lattices, of the existence of a
critical probability that is less than unity for the force-balance model, so that we can place our interpretation of
the numerical data for this model on a more rigorous footing. Finally, we discuss improved numerical methods
for determining the two critical probabilities on the hyperbolic lattice for the k-core percolation models.
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I. INTRODUCTION

Geometry plays a key role in driving physical processes
in such different areas of physics as relativity, cosmology,
quantum field theories, and condensed matter [1–7]. In
condensed-matter systems, for example, one may consider
stochastic processes such as an electron moving through a fixed
array of atoms in both Euclidean [8] and hyperbolic geometries
[9]. The effect of geometry on the nature of a phase transition is
of particular interest [10,11]. For example, hyperbolic spaces
possessing a constant negative curvature of −1 have been
recently applied to several condensed-matter models, namely
the Ising model [12–18] and percolation [19–21].

Why consider hyperbolic spaces? Hyperbolic geometry
connects to properties of mean-field theory, as studied on Bethe
lattices, with the same nonvanishing surface-to-volume ratio
of compact structures as the size of the lattice scales to infinity
[16,17]. And yet there are loops at all length scales, as is the
case with Euclidean lattices. Accordingly, hyperbolic lattices
provide a test bed for studying phase transitions in a geometry
that interpolates between Bethe lattices and Euclidean lattices.
Hyperbolic lattices are also interesting from a glassy physics
perspective because they provide a natural mechanism in two
dimensions to frustrate global crystalline order and allow for a
more tractable model to study the glass transition and jamming
in two dimensions [22,23].

A hyperbolic lattice is a tessellation of the hyperbolic plane,
usually denoted by the so called Schläfli symbol {P,Q}, where
regular polygons of P sides tile the plane so that Q of these
polygons meet at each vertex [24], and P , Q satisfy the relation

(P − 2)(Q − 2) > 4. (1)

It should be noted that (i) Euclidean lattices satisfy the equation
(P − 2)(Q − 2) = 4, and (ii) for lattices on the elliptic plane,
the relation (P − 2)(Q − 2) < 4 holds [25]. Therefore, the
elliptic and Euclidean planes admit just a finite number
of tessellations, while the hyperbolic plane is much richer,
admitting an infinite number. We will use the Poincaré disk
representation of the hyperbolic plane, which is the unit radius
disk with its respective metric [26].

We will work with several hyperbolic tessellations, an
example of which is seen in Fig. 1, to study k-core [27,28] and
force-balance [29] percolation models and explore the nature
of their transition. Both models are examples of constraint
percolation in that they go beyond the usual random dilution
of sites on a lattice, otherwise known as percolation. There
are constraints on the dilution (or occupation) of sites. k-core
percolation is a constraint percolation model in which occupied
sites having less than k occupied neighboring sites are pruned
starting with an initial random and independent occupation
of sites. This pruning is done consecutively until all occupied
sites have at least k occupied neighboring sites. This constraint
imposes the scalar aspect of the local Hilbert stability criterion
for purely repulsive particles, i.e., k � d + 1 in d dimensions
[30], and therefore it may explain how purely repulsive
particles form a jammed packing [28].

In mean field, k-core percolation resembles some properties
of a mixed phase transition [28], i.e., discontinuity in the order
parameter and a diverging length scale, as in the jamming
transition [31]. And yet, k-core percolation on Euclidean
lattices appears to exhibit either a continuous phase transition
in the same universality class as ordinary percolation [32], or
no transition [33]. So we ask the following questions: What
is the nature of the k-core percolation transition on hyperbolic
lattices? Will the transition behave more like what is found on
the Bethe lattice?

To enforce the local Hilbert stability condition beyond just
the scalar aspect in two dimensions, at least three neighboring
particles must enclose a particle within a triangle so that forces
balance and each particle is locally mechanically stable. This
condition has been encoded in a constraint percolation model
known as force-balance percolation [29]. Accordingly, the
force-balance model introduces the notion of force stability,
which is not taken into account by the k-core models. Such
a constraint does not allow for finite clusters, at least in
Euclidean geometries, which is very different from k-core
percolation. The force balance model was studied in two
and three dimensions [29]. Numerical simulations suggested
strong signs of a discontinuous transition in the standard
order parameter (i.e., the fraction of sites participating in the
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FIG. 1. {3,7} tessellation on the Poincaré disk.

spanning cluster), which also occurs in jamming. Numerical
simulations also suggested that there exists a correlation length
scale diverging faster than any power law; this is different from
jamming, where numerics suggests a more standard power-law
diverging correlation length [34]. We expect force-balance
percolation to exhibit a discontinuous percolation transition on
hyperbolic lattices since it already appears to be in the presence
of many loops [28,29]. Perhaps, however, the diverging length
scale on the hyperbolic lattice will be a power law, as opposed
to faster than a power law on the Euclidean lattice. In any event,
the discontinuity in the onset of the spanning cluster should
give us something to compare against when trying to determine
whether or not k-core percolation exhibits a discontinuous
transition on hyperbolic lattices.

As you will soon discover, many of the numerical
techniques developed for the analysis of the phase transition
in ordinary percolation are not as readily applicable on
hyperbolic lattices given the strong boundary effects, which
makes the above questions slightly difficult to answer. There
also exists the possible complication that there are two
phase transitions, as has been demonstrated for ordinary
percolation—one transition at the onset of many spanning
clusters touching the boundary, and a second transition at the
onset of all of the spanning merging into just one spanning
cluster [21]. Reference [35] asked the above questions for
the k = 3 case and concluded, based on a conjecture and on
numerical evidence, that the mixed nature of the k = 3-core
percolation transition on the Bethe lattice was robust
on the hyperbolic lattice. In light of more recent work
identifying crossing probabilities on the hyperbolic lattice for
ordinary percolation [18], we revisit the above questions for
k = 3-core percolation and analyze the other k-core models
as well as force-balance percolation.

The remainder of this paper is organized as follows: We
will study several properties of k-core percolation models
for k = 1,2,3, and force-balance percolation on hyperbolic
tessellations. We present in Sec. II details of the hyperbolic
lattice and various percolation algorithms. In Sec. III, we
present theoretical proof that the threshold for force-balance
percolation is strictly less than 1 for most of the tessellations.
This section is a bit technical, and it can be skipped if the
reader is more interested in the nature of the phase transition.
We present our numerical results in Sec. IV, where we study the
crossing probability and other measurements. We summarize
and discuss the implications of our results in Sec. V.

II. MODEL AND METHODS

The key step in the simulation process is to construct a
hyperbolic lattice. We do this by implementing the algorithm
described in detail in Ref. [36]. In the construction of a {P,Q}
hyperbolic lattice, where again P denotes the number of sides
of each polygon and Q denotes how many polygons meet
at a vertex, the central polygon is built first, and this is the
first layer. Then, by translations and rotations of the central
polygon, the second layer is built. This process is followed
recursively until a desired number of layers is constructed. An
l layer is composed of those polygons that do not belong to an
m layer for m < l and share an edge or vertex with a polygon
in the (l − 1) layer. The algorithm makes use of the Wierstrass
model for hyperbolic geometry, where points lie on the upper
sheet of the hyperboloid, x2 + y2 − z2 = −1. Consequently,
rotations and translations are given by 3 × 3 Lorentz matrices.
The Wierstrass model is related to the Poincaré model through
the stereographic projection toward the point (0,0, − 1)t given
by

⎛
⎝

x

y

z

⎞
⎠ −→ 1

1 + z

⎛
⎝

x

y

0

⎞
⎠. (2)

The exponential growth of the number of vertices with
respect to the number of layers constrains severely the number
of layers used in the simulations. Typically, we simulate around
10 layers. This is comparable to the recent work by Gu and
Ziff studying ordinary percolation on hyperbolic lattices [18].
Recent work on implementing periodic boundary conditions in
certain tilings may ultimately be investigated [37]. However,
the sets of hyperbolic tilings that can be used with the methods
in Ref. [37] have fewer than 30 000 sites due to a lack
of knowledge of all possible normal subgroups of a given
Fuchsian group.

Once a tessellation is created, each of its sites is occupied
with probability p. For k-core percolation, we then recursively
remove any occupied site (excluding boundary sites) that
has fewer than k occupied neighboring sites. For force-
balance percolation, we recursively remove any occupied sites
(excluding boundary sites) that are not enclosed by a triangle
of neighboring occupied sites, i.e., those sites that are not
locally mechanically stable. We do this until all occupied sites
obey the imposed constraint. We have numerically tested about
one million runs, so that the order in which we check the
force-balance constraint does not affect the final configuration,
i.e., that the model is Abelian. It has also been argued that the
k-core model is Abelian [38].

We then use the Hoshen-Kopelman algorithm to identify
the clusters and their respective sizes. To determine if a cluster
is spanning, we break up the lattice into four cardinal regions:
NE, NW, SW, and SE. See Fig. 2. We regard the cluster as
percolating, or spanning, when it connects either NE and SW
sites or NW and SE sites, as in Ref. [18]. We then measure the
probability to span or cross for an occupation probability p,
and we denote it R(p). We also measure a quantity defined
as S1/N , where S1 is the size of the largest cluster and
N is the total number of sites. This quantity resembles the
order parameter and, therefore, determines the continuity or
discontinuity of the onset of the transition(s), i.e., should it
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FIG. 2. {3,7} tessellation on the Poincaré disk with the four
boundary regions.

increase from zero continuously as the occupation probability
p is increased, then the transition is continuous. We also
measure the number of times we check the lattice to cull
occupied sites not obeying their respective constraints, i.e.,
the culling time. This culling time tends to diverge near the
transition on Euclidean lattices [29].

III. PROOF OF pFB < 1 FOR SOME HYPERBOLIC
TILINGS

It has been established that there exist two critical perco-
lation probabilities, pl and pu, for ordinary percolation on
hyperbolic tilings [20,39,40]. For the force-balance model,
however, it seems that there is just one critical percolation
probability, according to the results presented later, demon-
strating the emergence of a percolating cluster. Let us call this
probability, pFB, the probability above which there is always
a percolating cluster. It is possible to prove that pFB < 1 for
some hyperbolic tilings {P,Q}. The proof follows two steps:

(i) First establish the existence of trees on a tessellation
{P,Q} with a certain connectivity that depends on the parity
of Q. For Q even we demand a connectivity z = 6, and for Q

odd, z = 5.
(ii) We apply a well-known result of k-core percolation

on trees, i.e., that the critical percolation is less than 1 when
k < z [27]. For our purposes, we require k = 5 for tessellations
of Q even and k = 4 for Q odd. Accordingly, we show that
sites on a percolating cluster for the k = 5-core model on the
z = 6 trees, and Q even, satisfy the occupation constraints of
the force-balance percolation model. Similarly, for the Q-odd
case, we study the k = 4-core model on z = 5 trees.

Let us prove each of these items in due order. First, we need
to show the existence of trees of connectivity z = 6 and 5 for
Q even and odd, respectively. Let us suppose Q is even. It is
easy to see that z = 6 trees cannot be built when Q = 4,6 as
there is not enough “space” to build trees given the eventual
overlaps. The case Q = 8 is more interesting. The tessellation
{3,8} does not admit a tree construction due to overlaps, as
illustrated in Fig. 3, where red arrows show some of those
positions at which the initial tree (green) eventually contains
overlaps. However, z = 6 trees can be built on the tessellation
{4,8}. To see this, we choose a site that we call the zeroth
generation. The first generation are the neighbors of such a site.
The nth generation will be formed by those site neighbors of
the (n − 1)th generation that do not belong to a kth generation

FIG. 3. One cannot embed a tree of connectivity z = 6 on the
{3,8} tessellation due to the lack connections.

where k < n. This is illustrated in Fig. 4. By construction,
between two adjacent first-generation sites on the z = 6 tree
there is one second-generation site that does not belong to
the tree. Now between the closest offspring of those first-
generation sites that are second-generation sites belonging to
the three, there are six third-generation sites not belonging to
the tree. By construction, such trees can be expanded without
overlapping so that they, indeed, remain trees.

For P > 4 we have more vertices in each layer, which gives
more space to build trees, and the same construction holds.
Accordingly, we can build z = 6 trees on the tessellation {P,8}
when P > 3. Likewise, it can be checked that for any P , Q

even, and Q > 9, it is possible to build a tree of connectivity
z = 6. Analogously, trees of connectivity z = 5 can be built
on tessellations {P,7} where P > 3, and for any tessellation
{P,Q} where Q > 8 is odd.

In summary, those trees necessary for our proof can be
built on any tessellation {P,Q} as long as Q > 8 and for the
tessellations {P,7},{P,8} as long as P > 3.

As for the second step in the proof, consider any site on
the tree built in step (i). A site of a {P,Q} tessellation will
be contained in a Q-gon as illustrated in Fig. 5. Now let
us take such Q-gons in a Euclidean setting as illustrated in
Fig. 6. One of the neighbors of the central site is isolated from
the others. Let us call it the north neighbor, NN. It happens
that any tree of connectivity z = 4 (Q even case) containing
site NN and imbedded in those trees of connectivity z = 5
satisfies the force-balance constraint as indicated in Fig. 7.
In two dimensions, this constraint is that every occupied site

FIG. 4. Tessellation {4,8} enables the construction of trees of
connectivity z = 6.
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FIG. 5. Tree construction on tessellations {4,7} and {4,8}: Top:
tree of connectivity z = 5 on the {4,7} tessellation. Bottom: tree of
connectivity z = 6 on the {4,8} tessellation.

(particle) have at least three neighboring occupied sites, and
at least three of these neighboring sites enclose the occupied
site in a triangle. This triangle condition on the central site is
preserved in the hyperbolic geometry given that the function
that relates those polygons in different geometries preserves
topology. A similar proof applies to trees of connectivity z = 5
embedded in trees of connectivity z = 6 (Q-even case).

The above analysis holds for any site, so we can always
construct such a Q-gon with the same characteristics for any
occupied site. Now let us call p4c the critical percolation
probability for k = 4-core percolation on trees of connectivity
z = 5, and p5c is such probability for k = 5-core percolation
on trees of connectivity z = 6. It follows from the discussion
above that pFB < p4c for Q even, and pFB < p5c when Q is
odd (search p4c and p5c), at least for those tessellations where
we can make the tree construction illustrated in Fig. 5. Since
both p4c and p5c are less than unity for the trees enumerated,
pFB < 1.

FIG. 6. Euclidean illustration of the central part of the trees on
hyperbolic tessellations: Left: Euclidean illustration of the “central”
part of the z = 5 tree on tessellation {4,7}. Right: Euclidean
illustration of the “central” part of the z = 6 tree on tessellation {4,8}.

FIG. 7. Illustration of all the possible cases of occupation for a
k = 4-core cluster on a tree of connectivity z = 5.

IV. RESULTS

We work with tessellations {3,7}, {7,3}, and {4,7}, where
the first two tessellations are the most commonly studied
[18,20]. We study k = 1,2,3-core percolation and force-
balance percolation on such tessellations by computing the
crossing probability, R, the probability of participating in the
largest cluster, PLC, and the culling time.

A. Crossing probability

Ordinary percolation exhibits three phases on the hy-
perbolic lattice [21]. Specifically, for p < pl there is no
percolating cluster, for pl < p < pu there are infinitely many
percolating clusters, and for p > pu the infinitely many perco-
lating clusters merge to form just one percolating cluster. The
existence of three phases is reflected in the crossing probability,
R(p). According to Ref. [18], as the number of layers tends
to infinity, R(p) tends to a function that in the intermediate
phase is a straight line with finite slope in the infinite layer
limit. If there is just one phase boundary, as with ordinary
percolation on Euclidean lattices, then in the infinite system
limit R(p) jumps discontinuously at the boundary from 0 to 1
through some value of R(pc), the Cardy crossing value [41],
at the transition. So there would be no finite slope region in
the infinite system limit.
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Since k = 1-core percolation removes only isolated occu-
pied sites, it is essentially ordinary percolation. We should
therefore observe this finite slope intermediate region in the
crossing probability as the number of layers tends toward
infinity. This finite slope region has indeed been observed in
Ref. [18] for k = 0-core, or ordinary, percolation. Figure 8
presents the crossing probability for all four percolation
models. To check for the existence of the intermediate region
in R(p), we extract its maximum slope M0 near the inflection
point. We then plot the inverse of this slope as a function of
the 1/� and extrapolate to the number of layers, �, going to
infinity limit. The results are illustrated in Fig. 9. The inverse
of the slope, 1/M0, tends to similar values for k = 1-core and
k = 2-core models. For k = 1 core it tends to 0.240 ± 0.004,
and 0.223 ± 0.010 for the k = 2-core model. Meanwhile,
1/M0 tends to 0.131 ± 0.007 for the k = 3-core model.

The fact that the inverse of the slope tends to −0.016 ±
0.020 for the force-balance model, which is zero within a
standard deviation of the intercept when making the respective
linear regression, is an indication that the slope tends to
infinity at the transition. Then the force-balance model would
exhibit just two phases, one with no percolating cluster and
the other with one percolating cluster as ordinary percolation
on Euclidean lattices. To make a more rigorous case for the
discontinuity of the crossing probability for the force-balance
model, we analyze the tendency of the inverse of the slope
1/M0 against 1/� for points located on the intersection
with the lines R(p) = c,c ∈ R. For c = 0.3,0.4,0.5,0.6,0.7,
the inverse of the slope tends to a value that is close to
zero but negative. This confirms the argument that R(p) is
discontinuous for the force-balance model, and, consequently,
there should be just two phases for this model.

The suggestion of a finite slope regime of R(p) for all
three k-core percolation models suggests that there is an
intermediate phase for all these models. In other words, all
three models behave similarly to ordinary percolation. Of
course, we have empirically chosen a function to implement
the extrapolation. In Ref. [18], the maximum slope M as
a function of N−0.7, where N is the number of vertices in
the tessellation, was used. We also tested slightly different
extrapolation functions, and our results remain unchanged in
terms of the interpretation.

B. Order parameter

For ordinary percolation on Euclidean lattices, the order
parameter P∞ is a continuous function of p [42]. Since the
k = 1- and k = 2-core models are equivalent to unconstrained
percolation in terms of the transition, they should behave
similarly. While the order parameter in k = 3 core on the
Bethe lattice jumps discontinuously at the transition [27], on
Euclidean lattices it does not. For force-balance percolation
on two- and three-dimensional Euclidean lattices, the order
parameter jumps discontinuously at the transition [29]. We
present P∞(p) for different layer numbers for the four different
models on the {3,7} tessellation in Fig. 10. Since any difference
between the curves is not clear by eye, we perform a similar
extrapolation to what was used for the study of R(p). We
measure the maximum slope of each curve and plot the inverse
of the maximum slope, 1/S0, with respect to 1/l. We found
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FIG. 8. Crossing probability on {3,7} tessellation for the different
percolation models: (a) k = 1 core, (b) k = 2 core, (c) k = 3 core,
and (d) force balance.

that the k-core models have very similar values for 1/S0

when l tends to infinity, i.e., 0.113 ± 0.002, 0.120 ± 0.003,
and 0.111 ± 0.002 for the 1-core, 2-core, and 3-core models,
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FIG. 9. Inverse slope of the crossing probability at the inflection
point, 1/M0, as a function of 1/l for the different percolation models
on the {3,7} lattice. For the 1-core model, 1/M0 tends to 0.240 ±
0.004; for 2-core, to 0.223 ± 0.010; for 3-core, to 0.131 ± 0.007; and
for force-balance (FB), to −0.016 ± 0.02, indicating M0 is tending
to ∞ as l tends to ∞.

respectively (see Fig. 11). The k-core models may indeed be
continuous phase transitions for the {3,7} tessellation. For the
force-balance model, the same extrapolation method yields a
negative value, as shown in Fig. 11, but one that is close to
zero. In other words, the negative sign is due to the errors
in the measurement of 1/S0. This result may indicate that
force-balance percolation belongs to a discontinuous phase
transition. This result is expected since it is discontinuous
on Euclidean lattices as well. To make a clearer statement
about the discontinuity of the force-balance transition, we
analyze the behavior of the derivative for points on a line
P∞ = c,c ∈ (0,1). We present the extrapolation of the inverse
of this derivative 1/S versus the inverse number of layers 1/l

for the values c = 0.3,0.4,0.5,0.6,0.7 in Fig. 12. We conclude
that as 1/S is tending to zero for several values of the constant
c, then P∞ is discontinuous, implying that the force-balance
model is discontinuous on the tessellation {3,7}.

Note that it is interesting that the 3-core model is exhibiting
a continuous transition given that Sausset et al. [35] argue
that the transition should be discontinuous. However, they do
not study the tessellation {3,7}, and the criterion they used
for a percolating cluster contains the central site and reaching
the boundary, which is different from the criterion we use as
we require the percolating cluster to connect the two opposite
boundary quarter sites. To better connect with this prior work,
we also study the case for which we require the central site to be
occupied when determining the percolating cluster. Our results
with this added constraint reach the same conclusion as before,
i.e., a continuous transition, with 1/S0 = 0.112 ± 0.007. We
should note that Sausset et al. [35] did not employ any
extrapolation method to more carefully check for the nature of
the transition with regard to the order parameter, as we have
done.

C. Culling time

The culling time is the number of sweeps through the lattice
to complete the culling and removal process for those occupied

FIG. 10. The fractional size of the largest cluster Plc for the
different percolation models on the {3,7} lattice: (a) k = 1 core,
(b) k = 2 core, (c) k = 3 core, and (d) force balance.

sites not obeying the respective constraints. On Euclidean
lattices, the culling time for k = 3 core and force-balance
percolation increases near the percolation transition due to an
increasing length scale in the distance over which the removal
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FIG. 11. The inverse of the maximum slope of P∞ as a function
of � for the different models’ percolation on the {3,7} lattice.

of one occupied site triggers the removal of other occupied
sites.

In Fig. 13, we observe the culling time for tessellation {3,7},
for k = 2,3 core and force-balance models. Note that for k = 1
core it just takes one sweep of the lattice to eliminate sites not
satisfying the constraint, so there is no diverging length scale.
According to Fig. 13, there is a peak in the culling time T

as a function of p. Note that the position of the peak for the
k-core models does not move as the number of layers increases.
However, for the force-balance model the peak is increasing
with the number of layers. We obtain the extrapolated p∗

FB ≈
0.837 when scaling pFB as l−1. We approximate each curve to
a Gaussian function f (x) = Ae−(x−x0)2/2σ 2

in a region close to
the peak. The tendency of σ versus 1/l is illustrated in Fig. 14.
Therefore, the width σ tends to a finite value for the k-core
models, 0.196 for 2-core and 0.210 for 3-core, while it shrinks
to zero for the force-balance model. Furthermore, the height
of the peak tends to infinity for all these peaks. A peak that
remains broad in the infinite system limit may be indicative
of the two percolation thresholds in the ordinary percolation
model that appear to survive in the k = 2- and k = 3-core
models.
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FIG. 12. Inverse slope of P∞, 1/S, tendency on 1/l for points on
the line P∞ = c and c = 0.3,0.4,0.5,0.6,0.7, for the force-balance
model on the {3,7} lattice.
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FIG. 13. Culling time for the different constraint percolation
models for the {3,7} lattice: (a) k = 2 core, (b) k = 3 core, and
(c) force balance. Each data set was averaged over 50 000 samples.

D. Debate about pu

There exist three phases for ordinary percolation on a hy-
perbolic lattice [21]. For p < pl there is no percolating cluster,
for pl < p < pu there are infinitely many percolating clusters,
and for pu < p the infinite number of percolating clusters
join, forming one. There is no clear consensus, however, about
how to numerically calculate pl and pu [43]. According to
Ref. [20], pl can be measured as the probability above which
there is a cluster connecting boundary points to the center. But
pu can be measured in three different ways. The probability
above which the ratio between the second biggest cluster
and the biggest cluster, S2/S1, becomes negligible, or there
is a finite fraction of the boundary points connected to the
middle, or the probability at which the cluster size distribution
P (s) becomes power law. Furthermore, for calculating pu,
Ref. [20] determines a way of finding pu by measuring the
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FIG. 14. Behavior of the width σ vs 1/l for the 2-core, 3-core,
and force balance models on the {3,7} lattice.

ratio S2/S1 between the second largest and largest clusters.
The initial claim was that in the infinite limit such a curve will
be discontinuous at some intersection point (see their Fig. 4).
However, in a more recent paper [43], the same authors stated
that it could be the case that the curve is not discontinuous at
this point, such as the curves for R(p). In fact, according to
Fig. 15 this seems to be the case here for the k = 1-core model
(and for the other two k-core models as well). So we do not
rely on this method any further.

According to Ref. [18], pl and pu can be measured from
the crossing probability R(p), i.e., the probability of having a
cluster going from one side of the lattice to the other. While this
is the more straightforward measure, it would be good to find
other measurements as a consistency check. It is important to
note that there is a relationship between pl and pu on a lattice
and its values on the dual lattice that are denoted as pl and pu,
respectively. Such a relationship is given by [40]

pl + pu = 1, pl + pu = 1, (3)

and the dual lattice to {m,n} is {n,m} [18]. As the measurement
of pl is less controversial than the one for pu, we can use Eq. (3)
to calculate pu by calculating pl on the dual lattice. To estimate
pl , we search for the point at which the crossing probability is
greater than or equal to 10−4, similar to the procedure followed
in Ref. [18]. For these calculations, the data were averaged
over 100 000 runs and have large fluctuations. We estimate
pl for the k-core models on the tessellation {3,7}. For k =

FIG. 15. Ratio S2/S1 for k = 1 core and for the tessellation {3,7}.

FIG. 16. Cluster size distribution ns for the different percolation
models in the {3,7} lattice: (a) k = 1 core, (b) k = 2 core, (c) k = 3
core, and (d) force balance.

1-core, pl = 0.20; for k = 2-core, pl = 0.24; and for k = 3-
core, pl = 0.37. According to Eq. (3), for ordinary percolation
(k = 1-core) on tessellation {7,3}, we should have pu = 0.80.
To estimate pu numerically (for the k = 1-core model), we
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follow the procedure outlined in Ref. [18] stating that pu is
the value of p at which the ratio of the crossing probability
R(p) becomes equal to 1 for tessellations {3,7} and {7,3}.
Accordingly, the best estimate for pu for the tessellation {3,7}
is pu = 0.73 ± 0.02, and for the tessellation {7,3} it is pu =
0.86 ± 0.02, which roughly satisfies Eq. (3).

E. Cluster size distribution

Finally, we study the number of clusters of a given size s

normalized by the number of lattice sites, ns , for a given p on
tessellation {3,7} with nine layers. The spanning cluster is not
taken into account when computing ns . The results for each
model are presented in Fig. 16. It was illustrated in Ref. [20]
that the probability of finding a cluster with a given size s,
for ordinary percolation, shifts from a truncated power law
to a power-law distribution when p passes the upper critical
probability pu. However, Ref. [20] did not register any change
in the qualitative behavior of the distribution when probability
p passed the lower critical probability pl . We see the same
qualitative behavior for all the models studied. According to
the cluster size distribution for the three k-core models, all have
a similar value for pu that is somewhat close to p = 0.7 since
ns is broadest at that occupation probability. Interestingly, the
cluster size distribution for the force balance model exhibits
similar characteristics to those of the k-core models.

V. DISCUSSION

We have studied four constraint percolation models on
mainly the {3,7} hyperbolic tessellation. Our data suggest that
all three k-core models exhibit similar behavior, thereby falling
under the universality class of ordinary percolation. This is not
a surprise for k = 2-core percolation, which has been shown to
behave similarly to ordinary percolation [44]. However, given
the mixed k = 3-core percolation transition on Bethe lattices
and, yet, the continuous phase transition (should pc < 1) on
Euclidean lattices for k = 3-core, this result is not obvious. In
fact, earlier work [35] of k = 3-core percolation on hyperbolic
lattices argued that the transition behaves discontinuously
based on arguments and when looking at numerical data
for the onset of the order parameter. We have employed a

more detailed numerical analysis here suggesting a continuous
transition, which does not contradict mathematics at this
point since no proof of a discontinuity has yet to be put
forth. So while our data suggest that all three k-core models
exhibit a continuous transition, the transition for force-balance
percolation is discontinuous, at least on the {3,7} tessellation.
Force-balance percolation is also discontinuous on Euclidean
lattices, so the hyperbolic lattice does not change this property
by the changing of the underlying geometry. The severity of
the constraints (more severe than k-core) presumably result in
the model being less sensitive to the geometry. We also have
presented proof that pFC < 1 for some tessellations, which can
be very useful in constraining the interpretation of the data.

Another interesting result is that the k-core models exhibit
two critical probabilities, pl and pu, while the force-balance
model seems to exhibit just one critical probability. This comes
from the fact that the force-balance condition constrains the
spatial occupation of neighbors of an occupied site in such
a way that the cluster tends to expand in every direction. It
does not allow for the possibility of having several percolating
clusters that do not overlap.

The observation that the nature of the transition in k = 3-
core percolation does not change from Euclidean lattices to
hyperbolic lattices may indicate that (the absence of) loops
are important in driving the transition toward a mixed one
since on the Bethe lattice there are no loops. In other words,
k = 3-core percolation may be very sensitive to loops. A 1/d

expansion for k = 3-core percolation demonstrated that the
mixed nature of the transition remained to order 1/d3 [45].
Of course, the loops are controlled perturbatively in this 1/d

expansion, which is not the case for the hyperbolic tessellation.
One must think about the effects of loops on k = 3-core
percolation to better understand the nature of its transition in all
geometries.
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