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A density-independent rigidity transition in
biological tissues
Dapeng Bi1, J. H. Lopez1, J. M. Schwarz1,2 and M. Lisa Manning1,2*

Cell migration is important in many biological processes, including embryonic development, cancer metastasis and wound
healing. In these tissues, a cell’s motion is often strongly constrained by its neighbours, leading to glassy dynamics. Although
self-propelled particle models exhibit a density-driven glass transition, this does not explain liquid-to-solid transitions in
confluent tissues, where there are no gaps between cells and therefore the density is constant. Here we demonstrate the
existence of a new type of rigidity transition that occurs in the well-studied vertex model for confluent tissue monolayers
at constant density. We find that the onset of rigidity is governed by a model parameter that encodes single-cell properties
such as cell–cell adhesion and cortical tension, providing an explanation for liquid-to-solid transitions in confluent tissues and
making testable predictions about how these transitions di�er from those in particulate matter.

Important biological processes such as embryogenesis,
tumorigenesis and wound healing require cells to move
collectively within a tissue. Recent experiments suggest that

when cells are packed ever more densely, they start to exhibit
collective motion1–3 traditionally seen in non-living disordered
systems such as colloids, granular matter, or foams4–6.

Collective behaviours in these non-living systems are governed
by a ‘jamming’ transition from a fluid-like state to a solid-like state
that occurs as the density approaches a critical packing density of
particles φc (ref. 6). This is also called a rigidity transition, because
the material becomes linearly stable with respect to infinitesimal
perturbations and begins to support shear stresses. Many of these
effects are also seen in self-propelled particle (SPP) models7. In
SPP models, overdamped particles experience an active force that
causes them to move at a constant speed, and particles change
direction owing to interactions with their neighbours or an external
bath. To model cells with a cortical network of actomyosin and
adhesive molecules on their surfaces, particles interact as simple
repulsive disks or spheres, sometimeswith an additional short-range
attraction8,9. Thesemodels also exhibit a rigidity/jamming transition
at φc<1 (refs 1,8,10,11), and near the transition point they exhibit
collective motion8 that is very similar to that seen in experiments12.

An important open question is whether the density-driven
rigidity transition in SPP models explains the collective behaviour
observed in non-proliferating confluent biological tissues, where
there are no gaps between cells and the packing fraction φ is
fixed at precisely unity. For example, zebrafish embryonic explants
are confluent three-dimensional tissues where the cells divide
slowly—and therefore the number of cells per unit volume remains
nearly constant. Nevertheless, these tissues exhibit hallmarks of
glassy dynamics, such as caging behaviour and viscoelasticity.
Furthermore, ectoderm tissues have longer relaxation timescales
than mesendoderm tissues, suggesting ectoderm tissues are closer
to a glass transition, despite the fact that both tissue types have
the same density1. This indicates that there should be an additional
parameter controlling the mechanical response in confluent tissues.

In this work, we study confluent monolayers using the vertex
model13–22, to determine how tissuemechanical response varies with
single-cell properties such as adhesion and cortical tension. We

find a new type of rigidity transition that is not controlled by the
density, but instead by a dimensionless target shape index that is
specified by single-cell properties. This rigidity transition possesses
several hallmarks of a second-order phase transition. These findings
provide a novel explanation for liquid-to-solid transitions in tissues
that remain at constant density.

The vertex model, which agrees remarkably well with
experimental data for confluent monolayers13–21, approximates
the monolayer as a collection of adjacent columnar cells. The
mechanical energy of a single cell labelled ‘i’ is given by14,16:

Ei=KAi(Ai−Ai0)
2
+ξiP2

i +γiPi (1)

The first term results from a combination of three-dimensional
cell incompressibility and the monolayer’s resistance to height
fluctuations or cell bulk elasticity15,23. Then KAi is a height elasticity,
andAi andAi0 are the actual and preferred cell cross-sectional areas.

The second term in equation (1) is quadratic in the cell
cross-sectional perimeter Pi and models the active contractility
of the actin–myosin subcellular cortex, with elastic constant ξi
(ref. 14), and the last term represents an interfacial tension γi
set by a competition between the cortical tension and the energy
of cell–cell adhesion18,24 between two contacting cells. γi can be
positive if the cortical tension is greater than the adhesive energy, or
negative if the adhesion dominates. It is also possible to incorporate
strong feedback between adhesion and cortical tension in this
term18,25. As only the effective forces—the derivatives of the energy
with respect to the degrees of freedom—are physically relevant,
equation (1) can be rewritten as Ei=KAi(Ai−Ai0)

2
+ ξi(Pi−Pi0)

2,
where Pi0=−γi/(2ξi) is an effective target shape index.

As discussed in ref. 16, when all single-cell properties are equal
(KAi=KA, ξi=ξ , Ai0=A0, Pi0=P0), the total mechanical energy of a
tissue containing N cells can be non-dimensionalized:

ε=
1

KAA2
0

N∑
i=1

Ei=

N∑
i=1

[
(ãi−1)2+

(p̃i−p0)2

r

]
(2)

where ãi=Ai/A0 and p̃i=Pi/
√
A0 are the rescaled shape functions

for area and perimeter. r=KAA0/ξ is the inverse perimetermodulus
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Figure 1 | Energy barriers for local cellular rearrangements. a, Illustration
of a T1 transition in a confluent tissue and the normalized distribution ρ of
normalized energy barrier heights1ε/1ε for a large range of parameters
(r=0.5, 1,2 and p0=3.2–3.7). They have a universal shape that is fitted well
by a k-gamma distribution (solid line), indicating that1ε completely
specifies the distribution and describes the mechanical response. b,1ε as
function of the target shape index p0 for various values of the inverse
perimeter modulus r.

and p0=P0/
√
A0 is the target shape index or a preferred perimeter-

to-area ratio. For simplicity, we focus on p0>0. For p0<0 there are
two regimes: a static regime with results identical to those presented
here for 0<p0<ppent, and a coarsening regime that is not consistent
with most observations of biological tissues. Geometrically,
a regular hexagon corresponds to phex0 =2

√
2 4
√
3≈3.72 and a

regular pentagon to ppent0 =2
√
5(5−2

√
5)

1/4
≈3.81.

In non-biological materials, bulk quantities such as shear/bulk
modulus, shear viscosity and yield stress are often used to describe
the mechanical response to external perturbations. However,
cells are self-propelled and, even in the absence of external
forces, cells in confluent tissues regularly intercalate, or exchange
neighbours26,27. In an isotropic confluent tissue monolayer where
mitosis (cell division) or apoptosis (cell death) are rare, cell
neighbour exchange must happen through intercalation processes
known asT1 transitions28,29, where an edge between two cells shrinks
to a point and a new edge arises between two neighbouring cells,
as illustrated in Fig. 1a. The mechanical response of the tissue is
governed by the rate of cell rearrangements, and, within the vertex
model, the rate of T1 rearrangements is related to the amount of
mechanical energy required to execute a T1 transition29. Therefore,
we first study how these energy barriers change with single-cell
properties encoded in the model parameters r and p0.

To explore the statistics of energy barriers, we test all possible
T1 transition paths (see Methods) in ten randomly generated
disordered samples each consisting of M = 64 cells. For each

value of p0 and r tested, we obtained the distribution of energy
barrier heights ρ(1ε). The functional form of the distribution
becomes universal (Fig. 1a) when scaled by the mean energy
barrier height1ε(r ,p0). The rescaled distribution is fitted well by a
k-gamma distribution (kkxk−1 exp(−kx)/(k−1)!) with x=1ε/1ε
and k=2.2±0.2. The k-gamma distribution has been observed
in many non-biological disordered systems30–32, and generically
results frommaximizing the entropy subject to constraints31,32. This
confirms that the distribution of energy barriers depends on the
single-cell properties p0 and r only through its average1ε.

Figure 1b shows the dependence of 1ε on p0 for various values
of r . At p0.3.8, the energy barriers are always finite—that is, cells
must put in some amount of work to deform and rearrange. Here
the tissue behaves like a solid; it is a rigid material with a finite
yield stress. As p0 is increased, the energy barriers decrease and
become vanishingly small in the vicinity of p0 ≈ 3.8, so that cell
rearrangements cost almost no energy. This suggests that the vertex
model may undergo a critical rigidity transition near p0≈3.8.

To test this hypothesis, we searched for a scaling collapse
based on theories for continuous phase transitions near a critical
point, such as the Ising model for ferromagnetism. Figure 1b
demonstrates that r sets the overall scale of 1ε as well as the
‘sharpness’ of the transition, whereas p0 controls the distance to the
transition. This suggests that the trio (r1ε, r ,p0−p∗0) is analogous
to (m,h,T −Tc) in the Ising model. Therefore, our scaling ansatz
is that the order parameter r1ε(r , p0) vanishes at the critical
point p0= p∗0 , with fluctuations controlled by r . In that case, near
the critical point the order parameter should obey the universal
scaling form33:

r1ε=|p0−p∗0|
β f±
(

r
|p0−p∗0|∆

)
(3)

Here z = r/|p0 − p∗0|∆ is the crossover scaling variable, ∆ is the
crossover scaling critical exponent, and f−, f+ are the two branches of
the crossover scaling functions for p0<p∗0 and p0>p∗0 , respectively.

After re-plotting the data in Fig. 1b using equation (3),
we find an excellent scaling collapse onto two branches with
∆=4.0±0.4,β=1.0±0.2 and a precise location of the critical point
p∗0=3.813±0.005, as shown in Fig. 2.

For the mechanically rigid branch in the limit z → 0, the
energy barrier can be rewritten in dimensional units and scales as
1E=KAA2

01ε∝A0ξ
(
p∗0−p0

)β . This indicates that these barriers
are completely governed by the perimeter elasticity ξ . At the
critical point, the two branches of the scaling function merge and
f+= f−=zβ/∆. In this case the dimensional energy barrier scales as
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Figure 2 | A rigidity transition in confluent tissues. a, Critical scaling collapse of the average energy barrier height1ε, normalized by multiplying
r/|p0−p∗0|

β , as a function of z= r/|p0−p∗0|
∆ for the data shown in Fig. 1b, confirming the scaling ansatz of equation (3). b, The rigidity transition is

demonstrated in a simple phase diagram as a function of p0, snapshots are taken from a typical rigid tissue (p0=3.7) and fluid-like tissue (p0=3.96).
A rigidity transition occurs at p0=p∗0≈3.813 for disordered metastable tissue configurations. The line corresponding to the order-to-disorder transition
reported by Staple et al.16 is shown for comparison. Below phex

0 , the ground state is a hexagonal lattice, and above phex
0 , the ground state is disordered.
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1E=A2β/∆

0 K β/∆

A ξ 1−β/∆, which means the energy barriers vanish at
the transition in the limit KA→0 or r→0.

This scaling collapse is similar to those seen in jamming
in particulate matter4,34 and rigidity percolation on random
networks35–37, suggesting that p∗0 is a critical point analogous to Point
J in the jamming transition or the critical occupation probability
p∗ in random network models. However, unlike the jamming
transition, which is density driven, density can not control the
rigidity transition in the vertex model because everything takes
place at a packing fraction of unity. Instead, this model exhibits
a novel rigidity transition controlled by the target shape index,
p0. Figure 2b summarizes these results in a simple phase diagram.
Although we focus on the simple case where cells are identical, the
rigidity transition is robust to small variations in cell properties (see
Supplementary Section IV).

Although we calculate T1 transitions by shortening or
lengthening a single cell–cell contact, our analysis of these
local perturbations suggests a critical mechanical response with a
growing length scale. To confirm and quantify these changes in
the macroscopic mechanical response, we study the vibrational
spectrum of the dynamical matrix38,39. We diagonalize the
dynamical matrix to obtain normal modes and their corresponding
eigenvalues {λi} (Methods). If all the eigenvalues are positive
(except for the trivial global translation modes with λ= 0), then
the system is mechanically rigid, and we associate each positive
eigenvalue with an eigenfrequency ωi =

√
λi that describes the

oscillations of each mode as the system is perturbed about its stable
point. In contrast, non-trivial zero eigenvalues correspond to floppy
eigenmodes—collective displacements of the vertices that cost zero
energy—and if these exist then the system is a fluid.

We define the cumulative density of states using equation (4):

N (ω)=
∫ ω

0+
D(ω′)dω′+N (λ=0)θ(ω) (4)

where D(ω) is the density of vibrational states38, N (λ= 0) is the
fraction of non-trivial zero eigenvalues, and θ(ω) is the Heaviside
step function.

In Fig. 3a,b we show the vibrational density of states obtained
by averaging over 100 random samples each containing M = 64
cells. For p0 < p∗0 , N (ω) exhibits Debye scaling ωd

=ω2 (ref. 38)
and approaches zero at zero frequency, which indicates that the
tissue possesses awell-defined stable linear response and is therefore
a solid. At p0 > p∗0 = 3.813, Fig. 3a plateaus to a finite value as
ω→0, which indicates the emergence of floppy modes (that is, the
existence of non-trivial zero eigenvalues). In addition, as the system
approaches the rigidity transition from the solid phase, the density of
statesD(ω) exhibits a peak that shifts to lower frequencies (Fig. 3b),
just as the so-called boson peak39–41 in jammed particle packings and
glasses. Interestingly, the shape and scaling of the peak is different
from those in particulate matter, and this is an interesting avenue
for future research.

Just as in jamming42, the critical point at which the system
becomes floppy fluctuates between different finite-size samples, as
shown in Fig. 3c. Therefore, we define p∗0α as the value of p0 at
which the number of non-trivial zeromodes first becomes non-zero
for a particular finite-size sample, labelled α, and perform finite-
size scaling on the distributions of p∗0α across many samples. In
Supplementary Section I, we demonstrate that these distributions
are independent of r , indicating that M alone controls the
fluctuations. Figure 3d shows that the mean of the p∗0α distribution
approaches p∗0 = 3.813 in the limit of large system sizes, and the
variance vanishes as M−1/ν , where ν≈1.33±0.05 is obtained from
a least-squares fit. This establishes that the rigidity transition takes
place at the well-defined value of p∗0 in the thermodynamic limit.

Another standard measure of linear mechanical response is the
shear modulus. We probe the tissue near the rigidity transition
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Figure 3 | Analysis of the vibrational density of states. a, The cumulative
vibrational density of states N(ω) for ω≥0 exhibits a rigidity transition at
r=0.1 and p∗0=3.813 (thick line). Thin lines correspond to r=0.1 and values
of p0 ranging from 3.78 to 3.83 in increments of 10−3. b, Vibrational density
of states D(ω) for selected p0 values, from left to right: 3.78, 3.79, 3.80,
3.81. At low ω, D(ω)∼ω follows Debye scaling before arriving at a boson
peak. As p0 is decreased towards the rigidity transition, the boson peak also
shifts to lower frequencies. c, The fraction of non-trivial zero eigenvalues in
the dynamical matrix N(λ=0) as a function of p0 becomes finite at some
p∗0,α , indicating the appearance of floppy modes or the loss of rigidity.
Di�erent lines correspond to four instances of this transition at system size
M=64 with di�erent random initial conditions. d, For finite systems, the
location of the rigidity transition p∗0,α is distributed with a mean 〈p∗0α〉 that
shifts as a function of system size M and approaches p∗0=3.813 as M→∞,
and a variance that decays as M−1/ν with an exponent ν≈ 1.33.

in response to a quasistatic simple shear strain γxy and calculate
the shear modulus Gxy (Methods). For systems with finite size,
we plot the shear modulus as function of p∗0α − p0. Figure 4
shows that the shear modulus vanishes as Gxy ∝ (p∗0α − p0)/r ,
which is yet another indication that this is a rigidity transition. In
Supplementary Section III, we also analyse the behaviour of the
shear modulus when averaged over p∗0α , which may be relevant for
experimental measurements.

An obvious remaining question is what sets the critical point
p∗0 ∼ 3.81. To answer this question, we first study a simple mean-
fieldmodel for a T1 topological swap. In an infinite confluent tissue,
the topological Gauss–Bonnet theorem requires each cell to have six
neighbours on average28. Therefore our mean-field model consists
of four adjacent six-sided cells. To mimic the effect of additional
neighbouring cells, we fix each cell area equal to unity. Equation (2)
then becomes:

ε4=
∑
4 cells

(p̃i−p0)2; ai=1 (5)

Equation (5) is calculated numerically during a T1
rearrangement (Methods), as shown in Fig. 5a. The total energy
during this process is shown in Fig. 5b as the edge length ` is
contracted (negative values) and a new edge is extended (positive
values); the energy barrier 1ε is the difference in energy between
the initial andmaximum energy state. As p0 increases,1ε decreases
as shown in Fig. 5c. The precise value p∗0 at which energy barriers
vanish can be estimated by calculating the energy cost of shrinking
an edge of length `= `0 inside a hexagonal lattice, while all other
edges remain unchanged. Precisely at the T1 transition, two of
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0α
−p0, which is the

system-specific distance to the rigidity transition. The value of p∗0α is
determined from the location at which floppy modes appear for the specific
configuration. Here the tissue contains M= 100 cells and the colours
correspond to (top to bottom): r=0.005 (blue), r=0.001 (green) and
r=0.02 (red). Inset: the shear modulus can be rescaled by
Gxy=(p∗0α−p0)/r. Data for ten tissues with random initial configurations
are shown.

the cells are pentagons, whereas the other two remain hexagonal.
Therefore if p0< ppent0 = (7+2

√
7)/(
√
2×33/4)≈ 3.812, pentagons

cost finite energy and therefore the transition necessarily requires
finite energy. In contrast, for p0≥ppent0 , pentagons (and n-gons with
n>5) cost no energy and the cells are able to remain in the ground
state throughout the transition, requiring zero energy. The estimate
p∗0 = ppent0 , indicated by a red dashed line in Fig. 5c, does identify
the critical target shape index in our mean-field model, and is
consistent with the critical point p∗0 = 3.813± 0.005 identified by
the scaling collapse of energy barriers in the full vertex model.

Is there an even simpler explanation for p∗0 ∼ ppent0 ? As in other
rigidity transitions6,35,36,40, we expect that the critical shape index
should also be related to isostaticity. In the vertex model with
periodic boundary conditions, cells tile the flat two-dimensional
plane, and therefore the total number of vertices V , cells M
and edges E are related through Euler’s formula: 0=V −E+M .
As each edge is shared by two cells, E is also related to the
average coordination number z of cells or E=Mz/2, which yields
V =M(z/2−1). The degrees of freedom are simply the motions of
each vertex in two dimensions: ndof=2V . Assuming force balance
(in both directions) and torque balance on each cell generates three
constraints per cell: nc=3M . At isostaticity, the number of degrees
of freedom equals the number of constraints: ndof = nc, resulting
in ziso= 5 and suggesting a mean-field transition at a shape index
of p∗0 ' 3.812. Although it gives a correct prediction, this isostatic
argumentmakes a strong assumption: that constraints are applied to
each cell instead of to each vertex. Therefore, an interesting direction
for future research is to understand under what circumstances the
energy functional (equation (2)) effectively groups vertices into
functional units that are cells.

Discussion
Although the vertex model has been used extensively to model
tissues over the past 15 years, there has never been a clear way to
connect themodel parameters to tissuemechanical properties. Here
we show that the vertex model has a new and previously unreported
critical rigidity transition that occurs at a critical value of the target
shape index p∗0∼3.81. This criticality is evident in energy barriers
to local T1 rearrangements, the vibrational spectrum of the linear
response, and the shear modulus of the tissue. Unlike SPP models,
where the liquid-to-solid transition is governed by density, our
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model has a constant-density glass transition governed by single-
cell mechanical properties such as cell–cell adhesion and cortical
tension encoded in the target shape index p0.

Analysing only the ground states of the vertex model, the
seminal work of Staple et al.16 found an ordered-to-disordered
transition at p0=phex0 ∼3.722.However, because almost all biological
tissues are strongly disordered, it remained unclear whether this
transitionwas relevant for the observed glass or jamming transitions
in multicellular tissues. Therefore, we explicitly study disordered
metastable states and transitions between them. In addition ref. 16
uses a linear stability analysis of a single cell to suggest that a
rigidity transition also occurs at phex0 . In contrast, our analysis
explicitly includes multicellular interactions (that is, collective
normal modes) and nonlinear effects (that is, energy barriers).
With this more sophisticated analysis, we demonstrate that vertex
models exhibit a rigidity transition at a value p0=ppent0 ∼3.81 that is
measurably different from the prediction p0=phex0 based on single-
cell linear stability.

Importantly, predictions based on this critical rigidity transition
have recently been verified in experiments43. Specifically, in both
simulations and experiments we can measure the shape index
p=P/

√
A for each cell in a monolayer, where P is the projected

cell perimeter and A is the cross-sectional area. In simulations of
the vertex model, we find that the median value of the observed
shape index p is an order parameter that also exhibits critical scaling:
p=p∗0∼3.81 for rigid or jammed tissues and p becomes increasingly
larger than p∗0 as a tissue becomes increasingly unjammed (Fig. 2).
This prediction is precisely realized in cultures from primary cells
in human patients, with implications for asthma pathobiology43.

We expect that this rigidity framework will help experimental-
ists develop other testable hypotheses about how the mechanical
response of tissues depends on single-cell properties. For exam-
ple, Sadati et al.44 have proposed a jamming phase diagram where
tissues become more solid-like as adhesion increases, based on
observations of jamming in adhesive particulate matter at densities
far below confluency. Using standard interpretations of the vertex
model (equations (1) and (2)), p0 increaseswith increasing adhesion,
and therefore our model predicts that confluent tissues become
more liquid-like as adhesion increases. This highlights the fact that
adhesion acts differently in particulate and confluent materials; in
particulate matter higher adhesion leads to gelation and solidifica-
tion, whereas in the vertex model larger adhesion leads to larger
perimeters, more degrees of freedom, and liquid-like behaviour.
These ideas suggest that the role of adhesion in tissue rheology may
be much richer and more interesting than previously thought.
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In addition, although all published vertex models assume three-

fold coordinated vertices, there is no proof that such structures
are stable for p0>phex0 (ref. 16). Furthermore, higher-order vertices
are apparently stabilized in some anisotropic biological tissues,
including rosette formation in Drosophila45. It will be interesting to
study what conditions stabilize higher-fold vertices.

This work may also be relevant to modelling the epithelial-
to-mesenchymal transition (EMT) that occurs during cancer
tumorigenesis. During EMT, epithelial cells with well-defined,
compact shapes and small perimeters relative to their areas
transition to mesenchymal cells with irregular shapes and large
perimeters relative to their areas46. As equation (2) specifies a fixed
shape index, one could interpret EMT as an increase in p0 leading
to a solid-to-liquid transition, providing a simple mechanical
explanation for the role EMT plays in metastasis. To explore this
idea further, it will be necessary to determine if a similar rigidity
transition exists in three dimensions. A simple extension of this
model would replace perimeters and areas in equation (2) with
surface areas and volumes, respectively; this is a promising avenue
for future work.

We expect that this model may be of interest to scientists
independent of its biological relevance. We have shown it exhibits
a simple rigidity transition with a novel control parameter, and
therefore it might provide a useful bridge between jamming
transitions in particulate matter6,40 and rigidity transitions in
random elastic networks35–37. In particular, the potential grouping of
vertices into functional cell units could draw an explicit connection
between spring networks and particle/cell packings. An open
question is whether our model belongs to an existing universality
class, and whether the transition is mean-field.

Finally, the fact that the vertex model exhibits disordered ground
states for p0 > p∗0 suggests that it may be a useful toy model
for thermodynamic (as opposed to kinetic) explanations of the
glass transition in particulate matter. Furthermore, these states are
predicted to be hyperuniform47 with a photonic bandgap, indicating
that theymay be useful for designingmetamaterials with interesting
optical properties.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Simulating a confluent tissue monolayer. To simulate confluent monolayers, a
random sequential addition point pattern48 of M points was generated under
periodic boundary conditions, with box size L chosen such that the average area
per cell is unity. Two methods of generating this initial point pattern were used: a
random sequential addition point pattern48, and a Poisson point pattern. The
results presented in this work are independent of the method of initial point
pattern generation. A Voronoi tessellation of this point pattern results in a
disordered cellular structure, which was then used as an input to the program
Surface Evolver49. Surface Evolver numerically minimizes the total energy of the
system (equation (2)) at fixed topology using gradient descent with respect to the
vertices of the cells. If an edge shrinks below a threshold value l∗, a passive T1
transition is allowed if it lowers the energy. On the solid side of the transition, all
structures are minimized such that the average energy of a cell changes by less than
one part in 1010 between consecutive minimization steps, and as in other
simulations of the vertex model15,16. On the fluid side of the transition,
minimization is challenging given the flat nature of the landscape, for the same
reasons the shear modulus is difficult to calculate near the transition, as discussed
in more detail in Supplementary Section III. Therefore, if the algorithm does not
reach the energy change threshold, the minimization algorithm is stopped after
500,000 minimization steps.

Once an initial energy-minimized state is reached, T1 transitions are actively
induced at every edge to measure energy barriers29. An example of a T1 in the
simple four-cell case is shown in Fig. 1a: the central thick edge is quasi-statically
contracted to zero length (`=0), at which point a T1 topological swap is executed.
After the T1, the length of the central edge is then expanded until it reaches the
initial length (`=`0). The total energy of four cells during this process is shown in
Fig. 5b; the edge length is represented by a negative value during contraction and
flips sign after the T1.

For each active T1 transition in an N -cell system, the energy barrier is defined
as the total energy difference between the initial state `=`0 and the onset of T1

topological swap (`=0). Calculations of energy barriers were repeated for various
values of r at decadal increments from 0.005 to 200 and p0 ranging from 3 to 4.

To calculate the shear modulus, we apply quasistatic simple shear to a tissue
using Lees–Edwards periodic boundary conditions. The shear modulus is
calculated by taking the linear response of the tissue, as defined by equation (6):

Gxy=
1
L2

lim
γxy→0

∂2ε

∂γ 2
xy

(6)

where L is the linear dimension of the tissue.

Calculation of the vibration density of states.We obtain the vibrational density of
states by diagonalizing the Hessian matrix of the system

Hiµjν=
∂2ε

∂riµrjν
(7)

where i, j are indices for vertices and µ,ν Cartesian coordinates, and ε is defined in
equation (2). The eigenvalues of equation (7) are {λi}.

All of these eigenvalues should be positive or zero for a minimized system. On
the fluid side of the transition, where the minimization is challenging because the
landscape is completely flat, this algorithm finds negative eigenvalues that are very
close to zero (10−4 of the average positive eigenvalue). Therefore, we label these
very small negative eigenvalues as zero to within our numerical precision, and they
are included in N (λ=0) through the manuscript.
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