Ferreira, Vitor O. Y Goncalves, Jairo Z. Y Sánchez, Javier (2014) Free algebras generated by symmetric elements inside division rings with involution. In: Altencoa6-2014, Agosto 11 al 15 de 2014, Universidad de Nariño - Colombia.
|
Text
altencoa_p4.pdf Download (510kB) | Preview |
Resumen
This is a joint work with Vitor O. Ferreira and Jairo Z. Gon ̧calves. For any Lie algebra L over a field, its universal enveloping algebra U (L) can be embedded in a division ring D (L) constructed by Cohn [?] (and simplified later by Lichtman [?]). If U (L) is an Ore domain, D (L) coincides with its ring of fractions. Consider now the principal involution of L, L → L, x 7→ − x. It is well known that the principal involution of L can be extended to an involution of U (L). It was proved by Cimpric, that this involution can be extended to D (L) [?]. For a large class of noncommutative Lie algebras L over a field of zero charac-teristic, we show that D (L) contains noncommutative free algebras generated by symmetric elements (with respect to the extension of the pri ncipal involution). This class contains all noncommutative Lie algebras over a field of zero characteristic such that U(L) is an Ore domain.
Tipo de Elemento: | Conferencia o Taller artículo (Speech) |
---|---|
Palabras Clave: | Infnite dimensional division rings, Division rings with involution, Free associative algebras, Universal enveloping algebra of a Lie algebra. |
Asunto: | L Educación > LB Theory and practice of education > LB2300 Higher Education |
Division: | Facultad de Ciencias Exactas y Naturales > Programa de Licenciatura en Matemáticas > Eventos > Álgebra, Teoría de Números, Combinatoria y Aplicaciones Altencoa - 2014 |
Depósito de Usuario: | Depto Matemáticas y Estadística |
Fecha Deposito: | 04 Sep 2014 20:05 |
Ultima Modificación: | 04 Sep 2014 20:05 |
URI: | http://sired.udenar.edu.co/id/eprint/115 |
Ver Elemento |