Peluffo-Ordóñez, Diego H. Y Anaya, Andres J. Y Alvarado, Juan C. Y Becerra, Miguel A. Y Castro, Andres E. Y Blanco, Xiomara. (2016) On the relationship between dimensionality reduction and spectral clustering from a kernel viewpoint. Advances In Intelligent Systems And Computing, 474. pp. 255-264. ISSN 2194-5357
Full text not available from this repository.Resumen
This paper presents the development of a unified view of spectral clustering and unsupervised dimensionality reduction approaches within a generalized kernel framework. To do so, the authors propose a multipurpose latent variable model in terms of a high-dimensional representation of the input data matrix, which is incorporated into a least-squares support vector machine to yield a generalized optimization problem. After solving it via a primal-dual procedure, the final model results in a versatile projected matrix able to represent data in a low-dimensional space, as well as to provide information about clusters. Specifically, our formulation yields solutions for kernel spectral clustering and weighted-kernel principal component analysis.
Tipo de Elemento: | Artículo |
---|---|
Palabras Clave: | Dimensionality reduction Generalized kernel formulation Kernel PCA Spectral clustering Support vector machine |
Asunto: | Q Ciencias > QA Mathematics > QA75 Electronic computers. Computer science T Tecnología > TK Electrical engineering. Electronics Nuclear engineering |
Division: | Facultad de Ingeniería > Programa de Ingeniería Electrónica > Productividad |
Depósito de Usuario: | Andres Pantoja |
Fecha Deposito: | 28 Jun 2018 04:45 |
Ultima Modificación: | 28 Jun 2018 04:45 |
URI: | http://sired.udenar.edu.co/id/eprint/4717 |
Ver Elemento |